Board of Regents University System of Georgia

Architecture and Engineering Design Standards
For Building Technology
(GT-Yellow Book)

Printed: December 17th, 2015

To quickly jump to a desired section, place your pointer on the section title and pick/select.
010001- General Requirements
013329 - Sustainable Design Reporting
013456 - Construction Indoor Air Quality
015713 - Temporary Erosion and Sediment Control
015721 - Indoor Air Quality (IAQ) Design and Performance Requirements
017419 - Construction Waste Management and Disposal
017801 - Commissioning Closeout Procedures
017900 - Demonstration and Training
018800 - Other Requirements
018113 - Sustainable Design Requirements
019100 - Commissioning General Requirements
022100 - Surveys
030000 - Concrete
040000 - Masonry
050000 - Metals
061000 - Rough Carpentry
064000 - Architectural Woodwork
071000 - Dampproofing and Waterproofing
072100 - Thermal Insulation
072700 - Firestopping
075000 - Membrane Roofing & Flashing
081000 - Doors
085000 - Windows
087000 - Door Hardware
092000 - Gypsum Board Assemblies
094000 - Ceilings
096000 - Flooring
096900 - Access Flooring
099000 - Paints and Coatings
101100 - Visual Display Boards
102113 - Toilet Partitions
102116 - Shower and Dressing Compartments
102813 - Toilet Accessories
104100 - Interior Signage
104400 - Fire Protection Accessories
123000 - Laboratory Casework
124800 - Rugs and Mats
125000 - Window Coverings
129313 - Bicycle Racks
142000 - Elevators
221116 - Plumbing Piping
224000 - Plumbing Fixtures
224700 - Drinking Fountains and Water Coolers
230000 - Mechanical
230001 - Mechanical General and Design
230002 - HVAC- General and Design
230003 - Space Conditions
230004 - Design Criteria
230519 - Metering and Related Piping
230900 - DDC Controls and HVAC Instrumentation
230901 - Compressed Air Piping Systems
231112 - Campus Chilled Water Distribution
231113 - Hydronic Piping
232123 - Hydronic Pumps
232213 - Steam & Condensate Heating Piping
234100 - Air Treatment Equipment – Filters
236416 - Centrifugal and Rotary Screw Water Chillers
236500 - Cooling Towers
237200 - Ventilation Systems
237201 - Laboratory Fume Hoods
237313 - Indoor Central-Station Air-Handling Units
238123 - Computer Room Air Conditioning Units
238233 - Heating Systems
238234 - EPA Title V Requirements
260000 - Electrical
260500 - Common Work Results for Electrical
260513 - Medium-Voltage Cables
260519 - Low-Voltage Electrical Power Conductors and Cables
260526 - Grounding and Bonding for Electrical Systems
260533 - Raceway and Boxes for Electrical Systems
260543 - Underground Ducts and Raceways for Electrical Systems
260553 - Identification for Electrical Systems
260573 - Short Circuit and Coordination Study
260923 - Lighting Control Devices
261200 - Network Transformers
261210 - Pad-Mounted Transformers
261300 - Medium-Voltage Switches
262200 - Low-Voltage Transformers
262300 - Low-Voltage Switchgear
262316 - Network Protectors
262413 - Switchboards
262416 - Panelboards
262419 - Motor-Control Centers
262500 - Enclosed Bus Assemblies
262713 - Electricity Metering
262726 - Wiring Devices
262816 - Enclosed Switches and Circuit Breakers
262913 - Enclosed Controllers
262923 - Variable-Frequency Motor Controllers
263200 - Packaged Generator Assemblies
265100 - Interior Lighting
265600 - Exterior Lighting
270500 - Common Work Results for Communications
273013 - Emergency Phones
274100 - Multimedia Infrastructure
274110 - Distance Learning
275313 - Clock Systems
281300 - Access Control
282300 - Video Surveillance
283100 - Fire Detection and Alarm
283300 - Fuel-Dangerous-Gas Detection and Alarm
300000 - Civil and Site Work
310000 - Earthwork
312500 - Erosion and Sedimentation Controls
320000 - Exterior Improvements
321000 - Bases and Paving
323100 - Fences and Gates
323200 - Retaining Walls
331000 - Water Utilities
333000 - Sanitary Sewerage Utilities
334000 - Storm Drainage Utilities
339000 - Cisterns
1.00 GENERAL REQUIREMENTS

A. These standards are for the guidance of Architects, Engineers, and contractor in the technical design of new buildings, additions to buildings and building renovations. They are minimum standards. Actual design should be consistent with the overall program, building quality, and scope of project. The design should be in context with, and in harmony with, the existing buildings on campus with sensitivity to the surrounding pallet of materials and colors.

B. Components accepted for installation must be current production model or running line that will allow for the expeditious reorder of parts or materials. Avoid the acceptance or installation of unique, special order components without local vendor representation which would make it difficult (and in some cases impossible) to obtain replacement parts or materials. Products offered as a donation must abide this criteria.

C. All new buildings and major renovations planned at Georgia Tech shall have an energy analysis performed to assure compliance with the Georgia State Code for Energy Conservation in New Buildings and the Energy Efficiency and Sustainable Construction Act of 2008.

D. If the Architect and/or the Engineer desire to make any exceptions to the Design Standards, written approval from the Office of Facilities must be obtained. Electronic mail communication to request the exceptions is acceptable.

E. Project time constraints, building size and complexity, and other factors may require the addition of a Management Scheduling Consultant to the Construction Team. This consultant will be retained by Georgia Tech Office of Facilities. In their contracts, the Architect and General Contractor should include time for coordination meetings with this consultant. See Section 01311 for details.

F. Consultants responsible for underground utility systems design shall be experienced in three-dimensional coordinated design of utility systems similar to those required by the project and shall be experienced in producing plan and profile drawings for utility construction.

2.00 AUTHORITIES AND CODE REGULATIONS

A. Board of Regents of the University System of Georgia
B. Jim James, Vice Chancellor, Office of Facilities
D. www.usg.edu/ref/capital/preplan_guide_2000.phtml
F. www.usg.edu/ref/capital/bppmanual/
G. Facilities IT Guidelines
H. www.usg.edu/ref/capital/it_guide.phtml
I. Historic Preservation Plan Guideline www.usg.edu/ref/planning/campus_preservation/

J. Georgia Institute of Technology Office of Facilities
 1. D. Scott Jones, AIA, Director Design and Construction
 2. Board of Regents Contract Documents

K. Campus Landscape Standards
 1. See website www.space.gatech.edu/masterplan.htm (Acrobat Reader program required to open the file.)

L. Architectural and Engineering Design Standards for Building Technology (the “Yellow Book”)
 1. See website http://www.facilities.gatech.edu/dc/standards/ (Acrobat reader program required to open the file)

M. GT BIM Requirements, Execution Plan, Component Check List, and Revit Template:
 1. See website http://www.facilities.gatech.edu/dc/standards/bim.php (Acrobat reader program required to open the file)

N. Presentation Standards:

O. Board of Regents State Construction Manual
 1. http://www.usg.edu/ref/capital/bppmanual/

P. Georgia State Finance and Investment Commission
 2. Georgia Department of Community Affairs
 www.dca.state.ga.us/development/constructioncodes/
 a. International Building Code, last adopted Edition (with current Georgia amendments)
 b. International Plumbing Code, last adopted Edition (with current Georgia amendments)
 c. International Mechanical Code, last adopted Edition (with current Georgia amendments)
 d. National Electric Code, last adopted Edition (with current Georgia amendments)
 e. ANSI 17.1 Elevator Code as adopted by State of Georgia
 f. Energy Efficiency and Sustainable Construction Standards for State Buildings

Q. Accessibility Requirements
 1. ADA Title II. Comply with 2010 ADA Standards for Accessible Design. Comply with Fair Housing Accessibility Guidelines.
3. Georgia Environmental Policy Act

4. Georgia Elevator Law/Elevator Rules and Regulations as enforced by the Department of Labor
 http://rules.sos.state.ga.us/cgibin/page.cgi=GEORGIA_DEPARTMENT_OF_LABOR%2FSAFETY_ENGINEERING3%2FESCALATOR_AND_ELEVATOR_RULES%2Findex.html&d=1

5. Georgia Historic Stewardship Program, State Historic Preservation Division.
 http://gashpo.org/content/displaycontent.aspx?txtDocument=316

R. Georgia Fire Marshal
 2. Contract Documents are to be submitted by the Georgia Tech Project Manager to the Campus Fire Marshal and the State Fire Marshal’s Office if required based on the funding source, ownership and new building status for review and approval. The Campus Fire Marshal or the State Fire Marshal will issue the Building Permit and authorize the Certificate of Occupancy.
 3. The Campus Fire Marshal may also be of assistance in scheduling with the State Fire Marshal’s Office for Contract Document review.
 4. Contract Documents for independently owned Fraternity or Sorority houses to be constructed on land leased from the Board of Regents / State of Georgia must be reviewed and approved by the State Fire Marshal who will issue the Building Permit and Certificate of Occupancy. A certified inspection service must be hired to inspect and approve the work of all construction trades to have utility connections for permanent service.

S. Fulton County Health Department

T. City of Atlanta
 1. The Georgia State Department of Natural Resources Environmental Protection Department has authorized the City of Atlanta to regulate and conduct technical reviews of projects with soil disturbances requiring erosion control. This review is administered by site plan review officers of the Highways and Streets Department. A Soil Disturbance Permit will be required, and a fee may be charged.
 2. City of Atlanta Building Code Sec. 8-2074, includes the Georgia Tech Campus within the City Fire Limits. All construction within the City Fire Limits must be non-combustible. Therefore, no wood framing is permitted. Exceptions may be submitted for variance and approval to the State Fire Marshal.
 3. The Department of Watershed Management has responsibility for water and storm/sewer taps, water taps and fire hydrants.
 4. Any contact with the City of Atlanta regarding utilities coordination is to be cleared beforehand with the Georgia Tech Office of Facilities.
 5. Preliminary plans and elevations of Fraternity or Sorority houses to be constructed on privately owned land must be reviewed and approved by the Georgia Tech Office of
Facilities. Building Permits will be issued and inspections will be executed by the City of Atlanta for privately owned land.

U. Atlanta Gas Light

1. Coordinate gas utilities through Mike Leasure, Utilities Manager, Georgia Tech Office of Facilities. The Office of Facilities and the Campus Fire Marshall must inspect gas piping installations.

3.01 BIM STANDARDS

A. General

1. Building Information Modeling (BIM) Requirements

2. Building Information Modeling (BIM) Component Checklist

3. Building Information Modeling (BIM) Execution Plan Template
.01 DRAWING STANDARDS

A. Each set of drawings shall satisfy the following minimum requirements:
 1. Provide a key map and key plans to show the location of the work site.
 2. Provide sufficient information to enable the contractor to determine from the drawings alone the total quantities of all materials and equipment required to execute the work.
 3. Locate all equipment, piping, and ductwork accurately and free of interference with all other building components.
 4. Present plans of all trades with the same orientation.
 5. Present all information in any orderly manner, legible, and consistent with the highest professional standards.
 6. Provide plans for International Building Code and Life Safety Code approval. Plans will clearly show exit paths and the measured distances to exits, exit capacities and all fire rated wall conditions.
 7. Have imprinted on each sheet the registration seal and legal signature of the registered professional architect or engineer who is responsible for designs.

B. Drawing Medium:
 1. Plot all drawings to the same sheet size for all trades.
 2. The Project title and record date will be the same on all sheets.
 3. All new buildings and major renovations shall be in Revit BIM model.
 4. Each trade to be a separate model linked/ing to the respective trades for the design.
 5. Upon final submittal each file shall be stand-alone files and shall not be collaborative files.
 6. Each Family element shall have the CSI specification referenced, basis of design manufacture, size and model number.
 7. Drawings to be numbered per the Uniform Drawing System - Drawing Set Organization as published in the United States National Cad Standards Manual.

C. Line Work:
 1. Line widths shall be graded for identification purposes from very thin (hatching patterns) to wide (elements cut in horizontal or vertical sections) using a consistent pattern.

D. Lettering:
 1. Lettering, as printed, shall not be smaller than 1/8" in height (12" for 1/8" scale, 6" for 1/4" scale, 3" for 2"scale, etc.).

E. Scales:
 1. Floor plans shall be drawn at not less 1/8" = 1’ – 0” (unless used as key plans). Enlarged detail plans (bathrooms, mechanical rooms, etc.) at not less than 1/4" = 1' - 0", preferably at 1/2"= 1' - 0".
 2. Indicate the scale used under each drawing or note as not to scale.
F. Symbols and Abbreviations:
 1. Provide a legend of symbols and abbreviations used for each discipline.

G. Site Plan:
 1. Show all outside piping and mechanical equipment on the architectural site plan. If necessary, repeat this information on separate engineering site plans for clarity.
 2. Show underground utilities in plan and profile. See individual sections for additional requirements for each type of utility. Plan and profile drawings shall be provided for the following as a minimum:
 a. Gravity drainage systems
 b. Pressure systems with pipe sizes exceeding 3”, except for steam and condensate.
 c. All steam and condensate piping.
 d. All medium voltage electric ductbanks.
 e. All concrete encased communications ductbanks containing one or more 4” conduits or containing more than (2) 2” conduits.

H. Floor Plans:
 1. All rooms and spaces to be numbered per the Georgia Tech Room Numbering Guidelines. Plan the Room Numbering to be consistent with a graphical wayfinding scheme that must be developed and approved at schematic design. See website www.space.gatech.edu/aboutus.htm.
 2. Show all fixtures and equipment on the plans.
 3. All rooms and spaces to be numbered per the Georgia Tech Room Numbering Guidelines. See website www.space.gatech.edu/aboutus.htm (Acrobat Reader program required to open this file).
 4. On the Reflected Ceiling Plan show all light fixtures, including exit signs and emergency lights, HVAC supply and return grilles, sprinkler heads, and audio and video equipment.
 5. Provide separate Furniture Plans as needed.
I. Roof Plan:
 1. Show all equipment, piping, and any ductwork located on roof. Show all roof penetrations and provide appropriate details of each type condition. Use standard details of the National Roofing Contractors Association (N.R.C.A.) and SMACNA.

J. Building Sections:
 1. Indicate all building components including ductwork and piping.
 2. In spaces such as ceiling spaces above hallways or any other space where HVAC ductwork or piping is located, show the location and elevation of each trade’s work.

K. Isometrics, Schematic Diagrams, Typical and Special Details:
 1. Use to clarify plan and section views.

4.02 REQUIRED DRAWINGS BY PHASE

A. **Concept Design** deliverables must be appropriate to the project scope for a new building, substantial addition or major renovation and include, at a minimum, the following:
 1. Site plans
 2. Floor plans
 3. Elevations
 4. Cost information
 5. Preliminary scheme evaluations

B. **Schematic Design** deliverables must be appropriate to the project scope for a new building, substantial addition or major renovation and include, at a minimum, the following:
 1. Site drawings – Show adjacent buildings, existing and proposed elevation contours, existing and new site utilities, vehicular and pedestrian flow, parking, service access and special construction required.
 2. Floor plans – Indicate proposed structural bays with room layouts that include door swings, program room numbers, names and areas. Identify mechanical, electrical and equipment rooms with fire walls, stairs and elevators. Show roof plans and proposed screen and parapet walls. Partial plans will include key plans.
 3. Fire Resistance Floor Plans – Illustrate all fire walls and means of egress for all phases of construction. Each phase of construction will comply with life safety and means of egress during the construction period. The Drawings must illustrate temporary measures for means of egress during any sequence or phase of construction.
 5. Building Sections – Develop a section through the entire building illustrating relationships of architectural and structural features and elements. Show all anticipated floor, ceiling, roof and exterior grade elevations.
 6. Equipment and Furniture – Illustrate furniture and equipment defined in the Program.
 7. Massing studies – Study models and computer generated graphics of the building, illustrating mass relationships and entrances of the facility.
8. Geotechnical and survey drawings – Services acquired, and reports received which justify and support the final location of the construction, which is established in this stage.

10. A Statement of Probable Construction Cost. Construction cost estimates will be within available budget constraints and will give appropriate mention of and respect for seasonal construction constraints. Scope change elements in the design process or current state of design affecting the original budget requirements will be identified and defined.

C. **Design Development** deliverables must be appropriate to the project scope for a new building or substantial addition or major renovation and include, at a minimum, the following:

1. Architectural & Civil
 a. Site Layout and Materials Plan – Illustrate the design forms and materials to be used. Major dimensions will be indicated. All appearance-related design issues should be addressed, resolved and shown.
 b. Site Grading and Drainage Plan – Show developed drainage concepts, include existing and new contours, drainage structures (numbered for general reference), and spot grade elevations.
 c. Site Utilities Plan – Indicate the plan relationships of existing and proposed utilities. Vertical relationship of the utilities will be noted by plan notations and profiles. Site plan including grading and site utilities, utility connection points and a stormwater management design.
 d. Planting Plan – Illustrate the centerpoints at desired spacing of major plantings. A key will explain the proposed form and design characteristics of the plants (large shade tree, flowering ornamental tree, low evergreen shrub, etc.). Existing trees to remain, and proposed trees will be indicated.
 e. Design Details – Show the design or detailing to be used in the site development. These details will clarify the relationship of vertical and horizontal surfaces, steps, walls and pavements, etc., including edge conditions at adjacent surfaces.
 f. Dimensioned floor plans indicating structural bay sizes and overall building dimensions. Floor Plan should show dimensions of major elements, and final partition locations, including all openings.
 g. Exterior and interior wall sections showing final dimensional relationships, material and component relationships.
 h. Floor Plan showing all fixed and loose equipment
 i. Large scale plans and sections as needed.
 j. Room finish schedule identifying all finishes, or Finish Plans.
 k. Building sections
 l. Door and hardware schedule showing door, frame and hardware type, and fire ratings, if any
 m. Window schedule showing types and sizes
 n. Preliminary development of details
Office of Facilities Architectural and Engineering Design Standards – Georgia Tech Yellow Book

o. Reflected ceiling plan including ceiling grid, light fixtures and all devices that penetrate or are mounted upon finished ceiling
p. Interior movable furniture, office equipment, demountable partitions and system furniture, layouts for all departments and floors including proposed building signage system
q. A thorough outline technical specification including all proposed materials.

2. Structural
 a. Foundation drawings
 b. Floor plan with all structural members located and sized
 c. Footing, beam, column and connection schedules
 d. Final floor elevations

3. Plumbing & Mechanical
 a. Mechanical equipment schedule indicating size and capacity
 b. Plumbing Fixtures Schedule
 c. Floor plans indicating mechanical equipment and plumbing fixtures. All equipment and fixtures should be shown and located.
 d. Floor plans showing main ductwork distribution, branch ductwork and plumbing piping. All ductwork and piping should be located and sized to coordinate with structural framing system
 e. All ceiling mounted devices should be located
 f. Legend showing all symbols used on drawings

4. Electrical
 a. Floor plan showing all major electrical equipment (switchgear, distribution panels, emergency generator, transfer switches, UPS system, etc.) which will be dimensioned and drawn to scale
 b. Site plan showing preliminary site lighting design with pole and fixture type designations
 c. Floor plan showing lighting layout, power, telecommunications and office automation devices and switches with preliminary circuiting
 d. Light fixture schedule

5. Other Deliverables:
 a. Survey and geotechnical information are required as part of the Design Development.
 b. Project Manual complete with all Division 01 – “General Requirements” sections and technical sections. “General Requirements” sections and technical sections. General Requirements sections unique to the project, such as including temporary facilities, and Supplementary Conditions, must be fully developed. With each technical specification section, for each product or material specified, include a photocopy of a cut sheet of the basis of design components and at least two acceptable components specified.
D. **Construction Documents** deliverables must be appropriate to the project scope for a new building, substantiated addition or major renovation and include, at a minimum, the following:

1. **Cover Sheet**
 a. Name, address of Owner, Construction Manager (if applicable), Architect, Consultants, Project Number
 b. Vicinity map
 c. Location map
 d. Index to all drawings
 e. Location Plan
 f. Code Analysis information such as: Fire resistance plans and building code construction type and occupancy information
 g. Abbreviation and symbol glossary

2. **Site Plan**
 a. A certified plot plan, (sealed by a Georgia licensed Land Surveyor)
 b. A grading plan 1’-0” or 2’-0” increments with appropriate sections
 c. Sedimentation Control and Storm Water Management Plans and profiles
 d. Local governing utility standards included in all utility details
 e. Standard details must be modified to suit project conditions. All non-applicable information must be deleted.
 f. Existing and proposed electrical, gas, sewer, water, storm drainage, telephone and TV cable utilities must be identified.
 g. Utility designs must show plan, profile and all fittings and details required by code and local government standards.
 h. Include locations of detour signs for the duration of construction.

3. **Landscape**
 a. An overall site plan showing plantings, irrigation and drainage system, site lighting and all site development features.
 b. Details and sections of all site development features, sidewalks, curbs, paving stones, bollards, ramps, exterior stairs, lawn areas showing seeding methods, etc.
 c. All landscape conditions should be thoroughly detailed
 d. A symbol glossary
 e. Planting schedule
 f. Seeding schedule
 g. Modify standard details to suit project conditions. Delete all non-applicable information.

4. **Architectural**
 a. A basic floor plan of the entire facility showing minimal detail with a grid or column reference system showing overall building layout dimensions, core spaces, numbered and named rooms, room square footage, floor opening penetrations, etc. Fire ratings of all partitions, fire doors, etc. should be clearly denoted.
 b. A dimensioned floor plan locating all interior partitions and exterior wall partitions from the grid or column reference system. Flor plan should include
room and workstation designations, interior and exterior door and window
designations.
c. A dimensioned floor plan showing wire management system with openings
located for voice, data, video and electrical and outlet locations.
d. Room wall elevations for all non-typical walls
e. Casework floor plan complete with schedule, details and elevations
f. Interior and exterior window, door and frame schedule, complete with elevations
and details for all head, jamb and sill conditions.
g. Interior and exterior finish and color schedule (exposed finished mechanical and
electrical items will be clearly addressed).
h. A reflected ceiling plan showing all grid, access doors, drapery tracks, light
fixtures, grills, diffusers, sprinkler heads, security devices, fire alarm devices,
intercom system, exit devices and acoustic treatment. Ceiling heights and type
should be indicated on the reflected ceiling plan.
i. Details to illustrate transitions between finish materials and construction types.
Major building sections in at least two directions. A sufficient number of details
to clearly indicate the method of construction for all building components and
include, but not be limited to: walls, floors, roofing assemblies, waterproofing
systems, insulating systems, interior and exterior finishes, architectural details,
interior stairs and elevators.
j. Interior signage locations must be shown on the floor plan complete with details
and schedules.
k. Partition type schedule and sections details for all interior, exterior and floor wall
conditions
l. Roof plan showing all roofing material, roof drains, overflows, access hatches,
roof walk pads, roof drainage slopes and elevations, scuppers, skylights and
mechanical and plumbing penetrations. Details must be provided for all edge,
parapet and flashing conditions.
m. All exterior building elevations showing finish materials, exterior door and
window openings and designations, lights, louvers, grille, signage, speakers and
other devices
n. All structural members included in, or enclosed by the architectural details must
be closely coordinated, with and the size verified by the structural engineer.
Details must indicate the framing and furring method wherever possible.
o. All mechanical/electrical elements included in, or enclosed by the architectural
details must be closely coordinated with and the size verified by the design
engineer. Details must indicate the framing and furring method wherever
appropriate.

5. Structural:
a. A dimensioned foundation plan showing and locating in plan and in elevation all
footing, foundations, foundation piers, caissons, grade beams, reinforcement with
all layouts for masonry and anchor bolts.
b. A dimensioned floor plan for each floor, showing all beams, beam sizes, duct and
piping penetrations, construction joints, expansion joints, edge conditions,
imbedded anchors and frames thickened slabs, recessed slabs stair penetrations, elevator shafts, floor loading, top of structure elevation and reinforcement.

c. Footing, column, grade beam, caissons, piers, reinforcement, and beam schedules
d. Dimensioned to scale details showing all conditions, connections, and structural sizes
e. Shear walls clearly shown on plan and schedule if symbol code is used
f. Abbreviation and symbol glossary
g. Fastener/connection schedule
h. Elevations of all footings, elevations to top of all beams, columns, recesses and floors
i. Roof beam plan, elevator hoist beams

6. Mechanical
 a. Abbreviation and symbol glossary
 b. Mechanical equipment schedule
c. Exterior louver schedule, as coordinated with architectural louvers
d. Floor plans indicating ductwork with sizes, ductwork mechanical devices, beams for floor above with ductwork penetrations
e. Reflected ceiling plan showing final location of all ceiling mounted mechanical devices which include but are not limited to; diffusers, return air grilles and thermostats
f. Floor plan indicating the sprinkler and standpipe riser systems including all required pumps and control devices
g. Fire damper schedule and location of dampers on each floor
h. Ductwork sound attenuation schedule
i. Vibration isolation schedule
j. Terminal control box schedule, with electrical and air volume requirements
k. Chilled water, condenser, refrigerant, fuel oil, steam and gas riser piping floor plans and riser diagrams and schematics including pipe sizes. Piping schematics must be in large enough scale to clearly indicate all control devices, valves unions and miscellaneous appurtenance.
l. Areas of concentrated mechanical equipment must be enlarged from the basic floor plan to not less than ¼”=1’0” illustrating detailed ductwork and equipment within the mechanical room in both plan and section views; coil access and filter access are to be shown to scale as verification of clearance.
m. Access doors both wall and ceiling, must be called out at each applicable location as coordinated with the architectural drawings (rated where applicable).
n. Floor plans should indicate housekeeping pads and weight of concentrated loads.
o. Duct/piping penetrations of all walls, floors, roofs, beams, columns and foundations must be coordinated with and verified by the structural engineer. Code complying fire stopping must be detailed for penetrations through fire rated assemblies.
p. Locate on the floor plans all controls system equipment and provide a panel and device schedule, indicator and panel graphics complete with sequence of operation system program diagram.
7. Plumbing:
 a. Fixture/connection schedule
 b. Abbreviations/symbol glossary
 c. Floor plans indicating domestic hot and cold water, storm, waste, vent and gas piping plans, including all valves, unions, fixtures, pipe sizes, and risers diagrams, etc.
 d. Piping and insulation jacket dimensions are to be coordinated with architectural finishes and casework; all exposed piping is to be verified with the Architect.
 e. Plan drawing of all water and sanitary branch piping for installation of interior equipment and fixtures.
 f. Typical piping riser schematics for all gravity flow piping systems
 g. Areas of concentrated plumbing equipment (hot water heaters, circulating pumps, etc.) must be enlarged from the basic floor plan to not less than ¼”=1’-0” detail in both plan and section views.
 h. Access panels, doors and provisions in both walls and ceilings are to be shown on floor plans for all valves, cleanouts and caps, etc.
 i. Connections to existing and new building utilities must be clearly shown. Requirements of governing utilities must be determined and clearly detailed and shown. Connection details and elevations must be checked and coordinated with applicable civil drawings.
 j. Design details
 k. Piping penetrations of all walls, floor, roofs, beams, columns and foundations must be coordinated with and verified by the structural engineer. Code complying fire stopping must be detailed for penetrations through fire rated assemblies.

8. Electrical:
 a. Lighting fixture schedule
 b. Lighting control schedule, switches, emergency lighting
 c. Floor Plan indicating all lighting fixture devices
 d. Power riser diagram for interior lighting systems
 e. Abbreviations and symbol glossary
 f. Panel schedules with panel locations shown on the floor plan
 g. Fan/motor control schedule/diagram
 h. Floorplan showing location of all fire alarm device/panel schedule, indicator graphics, riser diagram including activated hardware and pull stations. Confirm activated hardware schedule.
 i. Floor plan showing location of all intercom devices, panel schedule and location and program riser diagram
 j. Floor plan showing location of all security devices, panel schedule and locations and riser diagram
 k. Floor plan showing location of all intercom and TV outlets and devices
 l. Power riser diagram and main distribution panel layout in large enough scale so each run can be clearly seen.
m. Telephone board schedule and riser diagram coordinated to equipment size requirements and connection provisions to antenna and cable TV system.

n. Floor plan indicating wire management wiring for power, receptacles, voice, video and data communications including circuiting, and connections to systems furniture, etc.

o. Main service entrance connection diagram as verified and coordinated with the governing power utility; locations of services entrances and transforms must verified with the Architect.

p. Areas of concentrated electrical equipment, and electric vault rooms in particular, must be enlarged from the basic floor plan to not less than 1/4"=1’0 and must be shown in plan and elevation.

q. Sheet notes must be applicable to each sheet. Standard notes and details must be modified to specific conditions.

r. Access to systems must be verified. Doors, panels or other provisions must be called out in all wall and ceiling locations for junction boxes, controls or any other device requiring access.

s. Raceway penetrations of all walls, floors, roofs, beams, columns and foundations must be coordinated with and verified by the structural engineer. Code complying fire-stopping must be detailed for penetrations through fire rated assemblies.

5.01 CONSTRUCTION DOCUMENT REVIEW AND ARCHIVAL DOCUMENTS

A. 75% completion of Construction Documents, submit the following:
 1. Two full size sets of black line on white bond reproductions of the Drawings.
 2. Two sets of the Project Manual.

B. At 100% completion of Construction Documents, submit the following:
 1. Three full size sets of black line on white bond reproductions of the Drawings. Three half size sets of black line on white bond reproductions of the Drawings.
 2. Two copies of the Project Manual.
 3. One CD-ROM(s) with all AutoCAD drawings and Project Manual.

C. Archival Documents: At the completion of the Work submit the following:
 3. Record Set of Contract Documents (as issued for bid):
 a. One sets of full size black line on white bond reproductions of the Drawings and Specifications.
 b. One set of half size black line on white bond reproductions of the Drawings and Specifications.
 c. Two electronic copies of PDFs of all contract documents, including all bid documents and addenda.
 d. Two electronic copies of all AutoCAD/Revit drawings of the contract documents, including all bid documents and addenda. All CAD drawings shall be whole and complete with NO Xrefs to symbols or other drawings. The
format of the CAD file shall be AutoCad RVT or DWG. No other format will be accepted. All Revit sheets shall have and accompany DWG file.

4. As-Built Documents (Drawings and Specifications):
 a. All changes made to the contract documents, including building and utility line locations modified during construction, must be noted on the as-built documents.
 b. Submit hard copies and electronic copies of the as-built drawings and specifications at the completion of the construction project with all change orders and as-built changes incorporated as follows:
 c. Submit three hard copies (full size) of the as-built drawings and specifications. One copy shall be prepared for archive.
 d. Submit two electronic PDF copies of the as-built drawings and specifications.
 e. Submit two electronic copies of CAD files of the as-built drawings and. All cad drawings shall be whole and complete Revit BIM and AutoCAD files for each Revit Sheet with NO Xrefs to symbols or other drawings. The format of the CAD file shall be AutoCad RVT and DWG . No other format will be accepted. The characters shall be acceptable for Microsoft file names. After the file name a period (.) and then the file extension (dwg). Example B50docs1.PDF
 f. Submit a completed copy of the GT Archive Entry Sheet. Obtain a copy of the “GT Archive Entry Sheet.xls” spread sheet from the Georgia Tech Facilities Web page http://www.facilities.gatech.edu/dc/standards/. The designer shall fill out all the information for each of the files for all electronic close out documents provided.

 a. The requirements for close-out documentation will vary from project to project but must include at a minimum:
 b. Operation and Maintenance Manuals
 c. Shop Drawings
 d. Warranties
 e. Project Submittals (Product data and schedules)
 f. Testing Reports
 g. Inspection Reports
 h. Site Visit Reports
 i. Training (Videos, Sign in Sheets)
 j. Project Progress Photos
 k. Transmittals for Attic Stock.
 l. Approved Interior Finish Materials and Samples.
 m. Subcontractor Directory of all subcontractors and suppliers who worked on the project.

o. Submit three hard copies of all close out documents. One copy shall be prepared for archive. (See section 4 below.). Two copies shall be prepared in ring binders, or as directed by the GT project manager.

p. Submit two CD Rom copies of all close-out submittals in a PDF format, with files organized by specification division.

q. Obtain a copy of the Excel spreadsheets from the Ga Tech Facilities Web page http://www.facilities.gatech.edu

r. Complete the GT Archive Entry Sheet, listing all of the electronic files submitted. The file names shall be no more than 8 characters. The characters shall be acceptable for Microsoft file names. After the file name insert a period (.) and then the file extension (dwg). Example B50docs1.PDF.

5. Direction for Packaging Files and Drawings for Archive:

a. Packaging Boxed Files Directions:
 1) Label all folders (i. e. with division number, etc.).
 2) Files must be assembled within the box so that lids may completely close in order to fit Records Center shelving.
 3) Records must be packed in standardized boxes designed to fit the Records Center’s shelving.
 4) The required boxes are medium duty and can accommodate both legal and letter sized documents.
 5) Boxes can be filled with crumpled paper to ensure files stand up.

b. Two sources for boxes that meet the records center requirements are below. Our preference is the Hollinger Boxes.
 1) (Hollinger Box #RSB 12 white #10760)
 2. (Fellows Bankers Box)
 http://www.fellowes.com/Fellowes/site/products/ProductDetails.aspx?Id=12770

c. Number the boxes on the outside of the box with permanent marker (1 of 4, 2 of 4, 3 of 4, etc.) to identify how many boxes are in the complete set.

d. Put the project name and building number on the outside of the box using a permanent marker.

e. Directions for Packaging Drawings:
 1) Drawings should be submitted for archive in brown bags.
 2) A source for bags is below:
3) No rubber bands should be used on drawings inside the bags.
4) Do not seal the bags shut.
5) Number the bags on the outside of the bag (1 of 4, 2 of 4, 3 of 4, etc.) using a permanent marker to identify how many bags are in the complete set/series.
6) Put the project name and building number on the outside of the bags using a permanent marker.

6.01 Typical Program Requirements

A. Building Design and Circulation:
1. All building entrance doors including bridges must be locked to entry from the exterior, and never locked to exit from the interior per the exit requirements of the applicable Code. Bridges between buildings may not serve as minimum required exits. All exterior doors to have electric strikes, and the main entrances doors to have card readers. For electric strike and card reader specifications see Section 16740 of the Engineering Design Standards of this manual.
2. Provide access to all building service closets from common public corridors.
3. Open Office areas using systems furnishings should be configured in suites and have locked door security.

B. Verify the fire rating of walls enclosing mechanical & electrical systems. Specify in architectural documents that all fire rated assembly work to be sealed with an approved fire stop foam at all wall and floor penetrations by pipes, conduits, ducts, etc. Specify fire rated walls to have fire rating notice stenciled above ceiling line per Building Code.

C. Coordinate locations for recessed fire extinguisher cabinets, emergency lighting and exit signs. Fire extinguisher units to be approved by Campus Fire Marshal.

D. The color of all wall and ceiling mounted fire alarm devices to be white or off-white with red lettering. The color of the lettering of all exit signs to be green (not red).

E. Ceiling plenums must have adequate clearances for ductwork and other building system components. Corridor ceiling height should be at 9’-0” but a minimum of 8’-0” clear.

F. Provide the following custodial closets and custodial storage rooms:
1. For buildings greater than 150,000 square feet provide one 12’ x 12’ custodial closets per floor. Also provide one 15’ x 15’ custodial storage room located near the loading dock.
2. For buildings greater than 75,000 square feet but less than 150,000 square feet provide one 10’ x 8’ custodial closet per floor. Also provide one 12’ x 12’ custodial storage room located near the loading dock.
3. For buildings less than 75,000 square feet, provide one 9’ x 6’ custodial closet per floor. Also provide one 9’ x 9’ custodial storage room near the loading dock.
4. Each custodial closet to have a floor mop sink and space for owner supplied shelving and mop holders.

5. Buildings with laboratories may require areas for handling the delivery and return of gas bottles. Provide empty bottle holding areas including chain restraints.

6. On each floor adjacent to vending areas and break rooms provide an area 25 square feet in size for recycling containers.

G. Machine Width Requirements:
 1. Glass Front Beverage 54”
 2. Bottle or Can Beverage 42”
 3. Snack Machine 41”
 4. Changer 24”
 5. All machines require minimum of 42” depth
 6. Typical arrangement would include 1 glass front beverage and 1 snack = 95" width 6" clearance on sides for door opening (if against a wall). Only in high-volume situations are changers needed
 7. 1 data port per machine for BuzzCard (if volume warrants)
 8. Each Beverage Machine requires Dedicated 20 Amp Circuit 120V (Beverage/Snack can share a circuit)
 9. If machines are facing one another - must accommodate ADA diameter for turnaround (layout not preferred) Heavy volume locations may require additional planning and more machines. Reference 2010 ADA Standards for Accessible Design, Chapter 3 – Section 304.
 10. Contact Rich Steele, rich.steele@gatech.edu

H. Stair design:
 1. In buildings with concrete structure, monumental stairs should be concrete. Enclosed Exit stair construction should be concrete filled pan treads. In buildings with structural steel frame, steel stairs should be concrete filled pan treads.
 2. Monumental Stairs should have closed risers; however, glass or perforated metal risers are acceptable.
 3. Provide roof access from at least one stair. In cases with no stair and only an access hatch, provide for a latch with a pad lock.
 4. Stairs used for frequent communication may have upgraded finishes, i.e. rubber treads, Scuff Master grade wall finish, etc., with maintenance considerations a priority.

I. Building Donor Recognition:
 1. Georgia Tech buildings must provide opportunities for Donor Recognition. The exterior of a building or portions of a building will have a prominent space for the donor name on the building. The graphic design is a specialty that will be directed by Design and Construction and may be performed as a separate task from the base design and construction. Plan interior spaces for donor recognition, signage,

2. Restroom Accessories – The following items are OFCI: GT will provide soap dispensers, paper towel dispensers, toilet paper dispensers, and hand sanitizer dispensers. Reference ADA Standards, Chapter 3 – Section 309 and Chapter 6 – Section 604.7 for all accessories.

3. Install defibrillators at all new buildings. AE is to coordinate specs and locations with EH&S.

7.01 Sole Source Items

A. Architectural items
 1. Door hardware
 a. 087100: best hardware lock cores this item is required to maintain and be consistent and compatible with previously-established campus standards.

B. Landscape/ Hardscape items
 1. These items are required to maintain consistency with established standards identified in the Georgia Tech landscape master plan.
 a. Pedestrian & roadway lights
 b. Benches
 c. Bike racks
 d. Trash cans/recycling containers/HVAC

C. 230900 JCI Controls
 1. A campus-wide contract has been established with Johnson Controls to provide the facility management system under state of Georgia DOAS contract # 9020017203. This DOAS contract has been consigned to this project. The contact at Johnson controls is Tim Lucas (770-870-3931 or TIMOTHY.B.LUCAS@JCI.COM)
 a. 230901 PEOPLE COUNTER
 This product is an extension of an existing system for M&V verification. In order to conform to and be compatible with the existing system this product sole source is required. This is a design standard in the Georgia tech “Yellow Book” Manufacturer: Infodev
 b. 238000: ULTRASONIC ENERGY METER
 This product is an extension of an existing systems for utility metering and billing system. In order to conform too and be compatible with the existing system this product sole source is required. Manufacturer: Siemens
 c. 238000: STEAM CONDENSATE DATALOGGER
 This product is an extension of an existing system for utility metering and billing. In order to conform to and be compatible with the existing system, this product sole source is required. Manufacturer: Yokogawa.
1) “Installation/Integration contractor is required to notify the Facilities Management IT department via email at askIT@facilities.gatech.edu when installing/configuring Yokogawa data loggers in new or remodeled Georgia Tech campus buildings.”

d. 238000: CO2 SENSORS

This product is employing aggressive demand control ventilation, which requires the use of very reliable and accurate co2 sensors. The desired sensors have a patented infrared technology that provides much better accuracy than other CO2 sensors on the market and these sensors are self-calibrating. Other CO2 sensors on the market are not self-calibrating, thus will require recalibration and maintenance over time. The continued calibration of the CO2 sensors is critical to the performance of the demand control ventilation system; this is one of the essential sustainable features of this building. There are no known additional equal manufacturers. Manufacturer: TELAIRE.

D. Electrical items

1. 264400: POWER & ENERGY METERS

This product is an extension of and existing systems for utility metering and billing system. In order to conform to and be compatible with the existing system, this product sole source is required. Manufacturer: POWERLOGIC.

END OF SECTION
013329 Sustainable Design Reporting

1.01 PEACH GREEN BUILDING RATING SYSTEM

A. Georgia-based Materials and Products:

1. Utilize the following spreadsheet to document the percentage of Georgia-based materials and products (building materials used in a project that are harvested, extracted, or manufactured in the State of Georgia). The general contractor shall track the materials and costs of each Georgia-based product used on the project and provide documentation to ensure compliance and obtain product data sheets. To comply, one of the three options below must be checked, “Yes” (Harvested, Extracted and/or Manufactured in Georgia). Determine if the project will use the Default Materials Value or Actual Materials Value to assess compliance with the 10% minimum guideline requirements.

2. Default Materials Value: Based on the total construction costs (hard costs for CSI Master Format 2004 Divisions 2-10 only)
 a. Default Materials Value: ___________________ = total construction cost * 0.45

3. Actual Materials Value: Based on actual materials cost (excluding labor and equipment) (hard costs for CSI Master Format 2004Divisions 2-10 only)
 a. Actual Materials Value: ________________

<table>
<thead>
<tr>
<th>Product</th>
<th>Total Product Cost</th>
<th>Harvested in Georgia</th>
<th>Extracted in Georgia</th>
<th>Manufactured in Georgia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes or No</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. Water-use Reduction:

1. The design team for all new buildings and major renovations planned at GT shall provide water savings calculations for plumbing fixtures and landscaping.

2. All major facility projects shall be designed, constructed, and commissioned to achieve a 20 percent reduction in water use when compared to water use based on the following plumbing fixtures:
 a. Lavatory with metered faucet 0.25 gallon per metering cycle
 b. Lavatory non-metered faucet 0.5 GPM at 60 psi
 c. Shower head 2.5 GPM at 80 psi
 d. Sink faucet 2.2 GPM at 60 psi
 e. Urinal 1.0 gallon per flushing cycle
 f. Water closet 1.6 gallons per flushing cycle
 g. Pre-rinse spray valves shall comply with ASME A112.18.1 standard of 1.6 GPM or less

3. Commercial steam cookers, dishwashers, clothes washers are exempt.

4. Plumbing fixture water efficiency calculations shall demonstrate the percent of water savings for both the design case and the baseline case, the default for both male and female occupants is 3 uses per day of flush and flow fixtures (1 water closet use and 2 urinal uses for males and 3 water closet uses for females), 3 lavatory faucets uses for each male and female, 0.1 uses for showers, and 1 use for kitchen sinks. The total fixture uses by all occupants must be consistent in the design and baseline cases. The default value for total annual work days is 260 days. This value must be consistent in the design and baseline cases.
 a. Number of occupants shall be calculated based number of full and part time staff, students, a transients (visitors, etc.). Calculate the number of occupants based on an 8-hour period. Each occupant occupying the building for 8-hours shall be equal to 1.0 Full Time Equivalent (FTE). Part time occupants FTE shall be calculated based on the number of hours per day occupant is in the building divide by 8.

5. Landscape Design: Landscape designers shall perform soil and evapotranspiration analysis to determine appropriate plant material and design the landscape with native or adapted plants to reduce or eliminate irrigation requirements. Landscape design shall endeavor to select plants that can survive on natural rainfall in the region.
6. Water-use Reduction EXAMPLE Calculation:

Design Case

<table>
<thead>
<tr>
<th>Flush Fixture</th>
<th>Daily Uses</th>
<th>Flow Rate (GPF)</th>
<th>Duration (flush)</th>
<th>Occupants</th>
<th>Water Use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra low-flow water closet (male)</td>
<td>1</td>
<td>0.8</td>
<td>1</td>
<td>150</td>
<td>120</td>
</tr>
<tr>
<td>Ultra low-flow water closet (female)</td>
<td>3</td>
<td>0.8</td>
<td>1</td>
<td>150</td>
<td>360</td>
</tr>
<tr>
<td>Waterless urinal (male)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>Waterless urinal (female)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Fixture</th>
<th>Daily Uses</th>
<th>Flow Rate (GPM)</th>
<th>Duration (seconds)</th>
<th>Occupants</th>
<th>Water Use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Lavatory</td>
<td>3</td>
<td>2.5</td>
<td>12</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>Kitchen Sink</td>
<td>1</td>
<td>2.5</td>
<td>12</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>Shower</td>
<td>0.1</td>
<td>2.5</td>
<td>300</td>
<td>300</td>
<td>375</td>
</tr>
</tbody>
</table>

Total Daily Volume (gal): 1455
Annual Work Days: 260
Total Annual Volume (gal): 378,300

Baseline Case

<table>
<thead>
<tr>
<th>Flush Fixture</th>
<th>Daily Uses</th>
<th>Flow Rate (GPF)</th>
<th>Duration (flush)</th>
<th>Occupants</th>
<th>Water Use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Water Closet (male)</td>
<td>1</td>
<td>1.6</td>
<td>1</td>
<td>150</td>
<td>240</td>
</tr>
<tr>
<td>Conventional Water Closet (female)</td>
<td>3</td>
<td>1.6</td>
<td>1</td>
<td>150</td>
<td>720</td>
</tr>
<tr>
<td>Conventional Urinal (male)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>Conventional Urinal (female)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Fixture</th>
<th>Daily Uses</th>
<th>Flow Rate (GPM)</th>
<th>Duration (seconds)</th>
<th>Occupants</th>
<th>Water Use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Lavatory</td>
<td>3</td>
<td>2.5</td>
<td>15</td>
<td>300</td>
<td>563</td>
</tr>
<tr>
<td>Kitchen Sink</td>
<td>1</td>
<td>2.5</td>
<td>15</td>
<td>300</td>
<td>188</td>
</tr>
<tr>
<td>Shower</td>
<td>0.1</td>
<td>2.5</td>
<td>300</td>
<td>300</td>
<td>375</td>
</tr>
</tbody>
</table>

Total Daily Volume (gal): 2386
Annual Work Days: 260
Total Annual Volume (gal): 620,360

| Water Use Reduction (%) |
7. Water-use Reduction Calculation Template:

<table>
<thead>
<tr>
<th>Design Case</th>
<th>Flush Fixture</th>
<th>Daily Uses</th>
<th>Flow Rate (GPF)</th>
<th>Duration (flush)</th>
<th>Occupants</th>
<th>Water Use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(male)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(female)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(male)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(female)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Fixture</th>
<th>Daily Uses</th>
<th>Flow Rate (GPM)</th>
<th>Duration (seconds)</th>
<th>Occupants</th>
<th>Water Use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Daily Volume (gal) ______
Annual Work Days 260
Total Annual Volume (gal) ______

<table>
<thead>
<tr>
<th>Baseline Case</th>
<th>Flush Fixture</th>
<th>Daily Uses</th>
<th>Flow Rate (GPF)</th>
<th>Duration (flush)</th>
<th>Occupants</th>
<th>Water Use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(male)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(female)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(male)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(female)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Fixture</th>
<th>Daily Uses</th>
<th>Flow Rate (GPM)</th>
<th>Duration (seconds)</th>
<th>Occupants</th>
<th>Water Use (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Daily Volume (gal) ______
Annual Work Days 260
Total Annual Volume (gal) ______

Water Use Reduction (%)

8. Water-use Reduction Points:
 a. The project will be recognized for exemplary performance in achieving the next incremental percentage threshold for water-use reduction. All major facility projects that are designed, constructed, and commissioned or modeled to achieve between a 25 percent to 95 percent reduction in water use when compared to water use based on plumbing fixture selection in accordance with water consumption rates for plumbing fixtures in this section will be eligible for this recognition. The project will be awarded points toward the Georgia Peach Green Building Rating System according
to the threshold achieved in water-use reduction. Refer to the following table to determine eligible points earned for this incentive.

<table>
<thead>
<tr>
<th>Water-Use Reduction Percentage</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
<td>0 (Requirement)</td>
</tr>
<tr>
<td>25%</td>
<td>2</td>
</tr>
<tr>
<td>35%</td>
<td>4</td>
</tr>
<tr>
<td>45%</td>
<td>6</td>
</tr>
<tr>
<td>55%</td>
<td>8</td>
</tr>
<tr>
<td>65%</td>
<td>10</td>
</tr>
<tr>
<td>75%</td>
<td>12</td>
</tr>
<tr>
<td>85%</td>
<td>14</td>
</tr>
<tr>
<td>95%</td>
<td>16</td>
</tr>
<tr>
<td>100%</td>
<td>20</td>
</tr>
</tbody>
</table>

C. Energy Efficiency:

1. All new buildings and major renovations planned at GT shall at a minimum comply with ASHRAE 90.1-2010. This standard is 30% higher energy efficiency across all building types than ASHRAE 90.1-2004, the State of Georgia’s current minimum energy performance requirement (See Pacific Northwest National Laboratory report 20405 for more information). The State of Georgia Energy Efficiency and sustainable Construction Standards for State Buildings (also known as Peach Green Building Rating System) encourages all state-funded facility projects to optimize energy efficiency, conserve energy and utilize local and renewable energy sources where determined to be cost effective (utilizing life cycle cost analysis with a payback of no more than ten years).

2. The design team for all new buildings and major renovations planned at GT shall provide Energy Modeling, Life Cycle Cost Analysis, and percentage of Greenhouse Gas Emissions (GHG) over the minimum requirements. Based on these analysis the project designers shall develop recommendations that exceed minimum energy and water efficiency requirements for GT’s considerations. The findings shall be prioritized based on Life Cycle Cost (LLC) with the lowest LLC listed highest first and to the highest LLC listed last in the recommendations in response to the Governor’s Energy Challenge. The Challenge commits all state agencies in Georgia to reduce energy consumption in state facilities 15 percent below 2007 levels by the year 2020.

a. Energy Model (Whole Building Energy Simulation) shall be utilized to demonstrate improvement options in response to the Governor’s Energy Challenge. Opportunities to improve building performance shall include, at a minimum, the follow building systems: building enclosure, lighting, plug loads, process loads, and HVAC alternatives for the proposed design that achieve in combination a minimum reduction in GHG emissions of 15% utilizing EPA Energy Star Target finder and the associated energy savings from the Energy Model when compared with the baseline building
performance in accordance with ASHRAE 90.1-2010 Appendix G. eQuest (http://www.doe2.com/equest/) Whole Building Energy Simulation software shall be utilized to demonstrate compliance with the Yellow Book requirements.

i. For the purpose of this analysis, process energy is considered to include, but is not limited to, office and general miscellaneous equipment, computers, elevators and escalators, kitchen cooking and refrigeration, laundry washing and drying, lighting exempt from the lighting power allowance (e.g., lighting integral to medical equipment) and other (e.g., waterfall pumps).

ii. Process loads must be identical for both the baseline building performance rating and the proposed building performance rating. However, project teams may follow the exceptional calculation method (ANSI/ASHRAE/IESNA Standard 90.1-2007 G2.5) to document measures that reduce process loads. Documentation of process load energy savings must include a list of the assumptions made for both the base and the proposed design, and theoretical or empirical information supporting these assumptions.

iii. Regulated (non-process) energy includes lighting (for the interior, parking garage, surface parking, façade, or building grounds, etc. except as noted above), heating, ventilation and air conditioning (HVAC) (for space heating, space cooling, fans, pumps, toilet exhaust, parking garage ventilation, kitchen hood exhaust, etc.), and service water heating for domestic or space heating purposes.

b. Energy Modeling and Life Cycle Cost Analysis Checklist:

i. Project Name: ____________________

ii. Project Number: ____________________

3. Note: The Energy Modeling Checklist serves to certify compliance with the recommendation of Section 4.1 – Energy Modeling and Life Cycle Cost Analysis, Recommendations contained in Peach Green Building Rating System. Utilize the following spreadsheets to determine energy savings from baseline design to proposed design alternatives. This Checklist should be completed at the end of the Design Document phase of the project. The form must be submitted to the agency owner at completion if this recommendation will be pursued.
Checklist 4.1.a - State of Georgia Energy Performance Comparison Chart

Baseline Design

Building Information
- Orientation
- Shading Devices
- Roof SRI (Solar Reflective Index)

Envelope Information: (List R-Values for the following components)
- Flat Ceiling/ Roof
- Exterior Wall
- Attic Knee Wall
- Basement Stud Wall
- Crawlspace Stud Wall
- Foundation Slab
- Cantilevered Floor
- Slope/Vault Ceiling
- Attic Knee Wall Sheathing
- Basement Continuous
- Crawlspace Continuous
- Above Grade Mass Wall
- Floor Over Unconditioned Space
- Other Insulation

Fenestration:
- Window U-Factor
- Skylight U-Factor
- Glazed Door U-Factor
- Window SHGC
- Skylight SHGC
- Opaque Doors U-Factor
- (<50% glazed)

Mechanical Summary
- Water Heater Type
- Gas
- Electric
- Other (explain)

Electrical Summary
- Lighting Controls
- Daylighting & Controls
- Lighting Power Density (wsf)
- Efficient Lighting Fixtures

Number of Heating & Cooling Systems (Air Handlers)
- Heating Type: Efficiency:
- Gas
- Air Source Heat Pump
- Other
- Cooling System Type (Direct Expansion, Heat Pump, Geothermal, Etc.)
- Cooling System SEER:

Energy Consumption Calculations
- Total Heating Load (Btu/h based on ACCA Man. J or other approved methodology)
- Total Cooling Load (Btu/h based on ACCA Man. J or other approved methodology)
- Cooling Sensible Load (Btu/h)
- Cooling Latent Load (Btu/h)
- Total Air Handler CFM (Based on Design/Calculations)

Total Energy Consumption of Design Alternative:

This form may be used to compare design alternatives to exceed the standards set forth in ASHRAE 90.1-2004 by 30% where it is determined that such 30% efficiency is cost effective based on a life cycle cost analysis with a payback at no more than ten years.
Checklist 4.1.b - State of Georgia Energy Performance Comparison Chart

Proposed Design

<table>
<thead>
<tr>
<th>Building Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation</td>
<td></td>
</tr>
<tr>
<td>Shading Devices</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Envelope Information: (List R-Values for the following components)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Ceiling/Roof</td>
</tr>
<tr>
<td>Exterior Wall</td>
</tr>
<tr>
<td>Attic Knee Wall</td>
</tr>
<tr>
<td>Basement Stud Wall</td>
</tr>
<tr>
<td>Crawlspace Stud Wall</td>
</tr>
<tr>
<td>Foundation Slab</td>
</tr>
<tr>
<td>Cantilevered Floor</td>
</tr>
<tr>
<td>Slope/Vault Ceiling</td>
</tr>
<tr>
<td>Attic Knee Wall Sheathing</td>
</tr>
<tr>
<td>Basement Continuous</td>
</tr>
<tr>
<td>Crawlspace Continuous</td>
</tr>
<tr>
<td>Above Grade Mass Wall</td>
</tr>
<tr>
<td>Floor Over Unconditioned Space</td>
</tr>
<tr>
<td>Other Insulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fenestration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window U-Factor</td>
</tr>
<tr>
<td>Skylight U-Factor</td>
</tr>
<tr>
<td>Glazed Door U-Factor</td>
</tr>
<tr>
<td>Window SHGC</td>
</tr>
<tr>
<td>Skylight SHGC</td>
</tr>
<tr>
<td>Opaque Doors U-Factor (<50% glazed)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Heater Type</td>
</tr>
<tr>
<td>Gas</td>
</tr>
<tr>
<td>Electric</td>
</tr>
<tr>
<td>Other (explain)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting Controls</td>
</tr>
<tr>
<td>Daylighting & Controls</td>
</tr>
<tr>
<td>Lighting Power Density (wsf)</td>
</tr>
<tr>
<td>Efficient Lighting Fixtures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Heating & Cooling Systems (Air Handlers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Type:</td>
</tr>
<tr>
<td>Efficiency:</td>
</tr>
<tr>
<td>Gas</td>
</tr>
<tr>
<td>Air Source Heat Pump</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Cooling System Type (Direct Expansion, Heat Pump, Geothermal, Etc.)</td>
</tr>
<tr>
<td>Cooling System SEER:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Heating Load (Btu/h based on ACCA Man. J or other approved methodology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cooling Load (Btu/h based on ACCA Man. J or other approved methodology)</td>
</tr>
<tr>
<td>Cooling Sensible Load (Btu/h)</td>
</tr>
<tr>
<td>Cooling Latent Load (Btu/h)</td>
</tr>
<tr>
<td>Total Air Handler CFM (Based on Design/Calculations)</td>
</tr>
</tbody>
</table>

TOTAL ENERGY CONSUMPTION OF DESIGN ALTERNATIVE:

This form may be used to compare design alternatives to exceed the standards set forth in ASHRAE 90.1-2004 by 30% where it is determined that such 30% efficiency is cost effective based on a life cycle cost analysis with a payback at no more than ten years.
4. The project will be recognized for exemplary performance in achieving incremental percentage thresholds for energy efficiency based on the standards set forth in ASHRAE 90.1-2004. All major facility projects may be designed, constructed, and commissioned or modeled to exceed the standards set forth in ASHRAE 90.1-2004. Any such project that exceeds the standards set forth in ASHRAE 90.1-2004 by 30 percent or more must demonstrate that such efficiencies are cost effective based on a life cycle cost analysis with a payback at no more than ten years. The project will be awarded points toward the Georgia Peach Green Building Rating System according to the threshold achieved in energy cost savings based on the standards set forth in ASHRAE 90.1-2004. Refer to the following table to determine eligible points earned for this incentive.

5. Energy Model Points:

<table>
<thead>
<tr>
<th>Energy Cost Savings Percentage</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>5%</td>
<td>5</td>
</tr>
<tr>
<td>10%</td>
<td>10</td>
</tr>
<tr>
<td>15%</td>
<td>15</td>
</tr>
<tr>
<td>20%</td>
<td>20</td>
</tr>
<tr>
<td>25%</td>
<td>25</td>
</tr>
<tr>
<td>30%</td>
<td>30</td>
</tr>
<tr>
<td>35%</td>
<td>35</td>
</tr>
<tr>
<td>40%</td>
<td>40</td>
</tr>
<tr>
<td>45%</td>
<td>45</td>
</tr>
<tr>
<td>50%</td>
<td>50</td>
</tr>
</tbody>
</table>
D. Commissioning:

1. All new buildings and major renovations planned at GT shall be commissioned. A major renovation is defined as renovation of ≥ 10,000 GSF or a project budget ≥ One Million Dollars. The commissioning authority (CxA) shall, at a minimum, commission the following systems; mechanical systems (heating, ventilating, air conditioning, and refrigeration equipment and controls, heat recovery and renewable energy systems, laboratory systems, test and balance verification), electrical systems (lighting and daylighting controls and renewable energy systems), and plumbing systems (plumbing fixtures, landscaping irrigation controls, potable water pump stations, sump pumps, domestic hot water systems, rainwater collection systems, and onsite waste water treatment systems). Other systems that may be considered in the commissioning process include the building enclosure, dangerous gas monitoring; normal, standby and emergency power systems, voice data, fire alarm; metering and submetering of utilities serving the building, mechanical conveyances. The commissioning authority shall evaluate the installation and performance of all commissioned systems to ensure that the building and systems perform in accordance with the Owner’s Project Requirements (OPR) for new construction and major renovations or the Current Facility Requirements (CFR) for existing buildings not being substantially renovated. The Commissioning requirements contained in Section 01 91 00 of the Yellow Book are binding on all parties.

2. Commissioning Documentation Required to be Submitted:
6.1 – Commissioning

Commissioning Checklist

Project Name: ______________________
Project Number: ____________________

Note: The Commissioning Checklist serves to certify compliance with the requirement of Section 1.1 – Commissioning, Requirements. This Checklist should be completed at the end of the construction phase of the project, as outlined in the Typical Time Frame column below. The form must be submitted to the agency owner at completion.

<table>
<thead>
<tr>
<th>Commissioning Task</th>
<th>Responsible Team Member</th>
<th>Typical Time Frame</th>
<th>Seasonal Climate Conditions</th>
<th>Responsible Team Member Sign Off</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare OPR</td>
<td>Owner</td>
<td>Prior to beginning Design Documents.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare BOD</td>
<td>A/E Team</td>
<td>During the Design Phase.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare a Cx Plan</td>
<td>CxA</td>
<td>During the Design Phase.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorporate Cx Requirements into Construction Documents</td>
<td>CxA</td>
<td>CxA will review existing project specifications and incorporate commissioning requirements.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction and task assignment meeting, i.e. Cx kickoff</td>
<td>CxA</td>
<td>When all contractors have been selected. This meeting is to introduce everyone needed in the Cx process and define roles and responsibilities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verification of Installation</td>
<td>CxA</td>
<td>CxA will be walking the job periodically as the job progresses looking for system wide issues that may prove to be functional problems later.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Energy Efficiency and Sustainable Construction Standards for State Buildings

<table>
<thead>
<tr>
<th>Completion of start-up test sheets</th>
<th>CxA</th>
<th>This should happen when the equipment begins to arrive on the job. It is the contractor’s responsibility to properly fill them out and return to the CxA. Factory start-up sheets are preferable. If the contractor does not have anything to use, the CxA will supply the sheets for them.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional performance tests and verification of TAB Reports</td>
<td>CxA / Contractors</td>
<td>Require the participation of all sub contractors and CxA designated personnel. This should take place prior to the CO. If any problems arise during testing, some amount of time may be required to correct the problems and this should also be considered before CO date.</td>
</tr>
<tr>
<td>Summary (final) commissioning report</td>
<td>CxA</td>
<td>Provided by the CxA after substantial progress has been made with resolving the discrepancies and deficiencies identified during functional performance testing.</td>
</tr>
</tbody>
</table>

I have complied with the Energy Efficiency and Sustainable Construction Standards for State Buildings requirements for commissioning.

Signed (Responsible Team Member): ___________________________ Date: ___________________________

Printed Name: ___________________________ Organization: ___________________________
Additional Commissioning – Checklist

Project Name:
Project Number:

Note: The commissioning tasks listed on the following checklist include the additional tasks that must be completed and signed off on to earn the incentive points, outlined in Section 5.1 – Commissioning, Incentives. This Checklist should be completed at the end of the construction phase of the project, as outlined in the Typical Time Frame column below. The form must be submitted to the agency owner at completion.

<table>
<thead>
<tr>
<th>Commissioning Task</th>
<th>Responsible Team Member</th>
<th>Typical Time Frame</th>
<th>Seasonal Climate Conditions</th>
<th>Responsible Team Member Sign Off</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduct a commissioning design review prior to mid-construction documents</td>
<td>CxA</td>
<td>CxA will conduct a second design review at 50% to 95% of Construction Documents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review contractor submittals applicable to systems being commissioned</td>
<td>CxA</td>
<td>During construction phase, CxA will review submittals for compliance with OPR and construction documents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop a systems manual for the commissioned systems</td>
<td>CxA</td>
<td>During construction phase, prior to occupancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify that the requirements for training are completed</td>
<td>CxA</td>
<td>End of construction phase, prior to occupancy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I have complied with the Energy Efficiency and Sustainable Construction Standards for State Buildings recommendations for additional commissioning.

*Signed (Responsible Team Member): __________________________ Date: __________________________

*Printed Name: __________________________ Organization: __________________________
1.02 PROHIBITED CONTENT INSTALLER CERTIFICATION

A. This Form Applies to Indoor Air Contaminant Reduction Requirements.

1. Contaminate content of field-installed adhesives and sealants.

2. Contaminates contained in composite wood and agrifiber products containing added urea-formaldehyde content of composite wood and agrifiber products, defined as particleboard, plywood, medium density fiberboard, wheatboard, strawboard, panel substrates, door cores, and laminating adhesives; applies to manufacturers/suppliers and installer.

 a. Procedure: Because installers are allowed and directed to choose accessory materials suitable for the applicable installation, each installer of work on this project is required to certify that their use of these particular materials complies with the requirements and to provide assurance that the products used do not contain the prohibited content.
2.01 PRODUCT CERTIFICATION

_____ Adhesives: I certify that the installation of the work of my firm on this project has not required the use of any adhesives. OR (certify the above or the below, not both)

_____ Adhesives: I certify that my firm has NOT installed any adhesive with VOC content exceeding that specified in Section 01 5721 of the Yellow Book on this project; product data and MSDS sheets for all adhesives used are attached.

_____ Joint Sealants: I certify that the installation work of my firm on this project has not required the use of any gunnable or pourable joint sealants. OR (certify the above or the below, not both)

_____ Joint Sealants: I certify that my firm has NOT installed any joint sealant with VOC Content exceeding that detailed in Section 01 5721 of the Yellow Book on this project; product data and MSDS sheets for all joint sealants used are attached.

_____ Composite Wood and Agrifiber Products: I certify that the work of my firm on this project has not required the use of any composite wood or agrifiber products, as defined above. OR (certify the above or the below, not both)

_____ Composite Wood and Agrifiber Products: I certify that the composite wood and agrifiber products, as defined above, furnished or installed by my firm DO NOT contain any ADDED urea-formaldehyde binder; product data and MSDS sheets for products used, whether specified or not, are attached.

CERTIFIED BY: (Installer/Manufacture/Supplier Firm)

Firm Name: ___

Print Name: ___

Signature: ___

Title: ___

END OF SECTION
013546– Indoor Air Quality Scheduling/Sequencing Requirements

1.01 OVERVIEW
A. Georgia Tech (GT) requires implementation of Construction IAQ to prevent indoor air quality problems resulting from the construction process. Poor control of indoor air quality (IAQ) during the construction activities produces odors, dust, air pollutants, and moisture intrusion and absorption into building materials which can cause health and comfort concerns to construction workers as well as building occupants. To minimize the negative effects and reduce risk, the construction team must take measures to manage the IAQ during the construction process. By effectively managing the IAQ during construction, health and comfort issues that can result from the construction process can be reduced significantly.

1.02 SUMMARY
A. Section Includes:
 1. Product requirements for indoor construction and finishing materials.
 2. Final construction products list.
 3. Construction site management.
 4. Indoor Environmental Consultant qualifications.
 5. Scheduling and product installation sequencing.
 7. Product installation.
 9. Indoor air quality testing.
 10. Documentation and reporting.

1.03 REFERENCES
A. American Conference of Government Industrial Hygienists (ACGIH).
B. American National Standards Institute/American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ANSI/ASHRAE):
 1. 52.2 – Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size.
 2. 55 – Thermal Environmental Conditions for Human Occupancy.
C. GREENGUARD Environmental Institute (GREENGUARD) – Indoor Air Quality Certification Program.
D. Sheet Metal and Air Conditioning Manufacturer’s Association International (SMACNA).
E. United States Environmental Protection Agency (EPA):
1.04 DESCRIPTION

A. This section outlines Indoor Air Quality (IAQ) actions required by the contractors to minimize contaminants generated during construction and the potential impact on the building occupants after completion. Odors and dust produced during the construction activities can cause health and comfort concerns and measures will be taken to manage the IAQ during construction.

1.05 DEFINITIONS

A. Indoor Air Quality (IAQ): According to the U.S. Environmental Protection Agency and National Institute of Occupational Safety and Health, the definition of good indoor air quality includes (1) introduction and distribution of adequate ventilation air; (2) control of airborne contaminants; and (3) maintenance of acceptable temperature and relative humidity. According to ASHRAE Standard 62-2013, indoor air quality is defined as “air in which there are no known contaminants at harmful concentrations as determined by cognizant authorities and with which a substantial majority (80 percent or more) of the people exposed do not express dissatisfaction.”

B. Type 1 Finishes: Materials and finishes which have a potential for short-term levels of off gassing from chemicals inherent in their manufacturing process, which are applied in a form requiring vehicles or carriers for spreading, or release a high level of particulate matter in the process of installation and/or curing. Type 1 Finishes include, but are not limited to the following:
 1. Composite wood products, specifically including particleboard from which millwork, wood paneling, doors or furniture may be fabricated.
 2. Adhesives, sealants, and glazing compounds, specifically those with petrochemical vehicles or carriers.
 3. Wood preservatives, finishes, and paint.
 4. Control and/or expansion joint fillers and sealants.
 5. All hard finishes requiring adhesive installation.

C. Type 2 Finishes: “Fuzzy” materials and finishes which are woven, fibrous, or porous in nature and tend to absorb chemicals off-gassed by Type 1 finishes or may be adversely affected by particulates. These materials become "sinks" for harmful substances which may be released much later, or collectors of contaminants that may promote subsequent bacterial growth. Type 2 Finishes include, but are not limited to the following:
 1. Carpet and padding.
 2. Fabric wall covering
 3. Insulation exposed to the air stream
 4. Acoustic ceiling materials
 5. Fabric covered acoustic wall panels
 6. Upholstered furnishings

D. Materials that can be categorized as both Type 1 and Type 2 materials shall be considered to be Type 1 materials.
E. **Dry Products:** Products used in a solid state, including gypsum board, carpet, acoustical panels and tiles, and textiles.

F. **MERV:** Minimum Efficiency Reporting Value.

G. **Priority Products:** Products known to be high chemical emitters, long-term emitters, and those expected to present emissions in high amounts (high surface area).

H. **Threshold Limit Value (TLV):** Industrial Work Place Standard as defined by ACGIH.

I. **Wet Products:** Products used in a liquid or semi-liquid state, including adhesives, joint sealers, paints, and coatings.

1.06 SUBMITTALS

A. **Construction IAQ Management Plan:** Submit four (4) copies of a Draft Plan to the Commissioning Authority (CxA). Develop the Working Plan, incorporating comments from the Draft Plan. Submit four (4) copies of the Working Plan to CxA.

1. Indicate in Section 7 of the IAQ Management Plan the control measures that will be utilized in the building to help maintain good IAQ during construction and during the pre-occupancy phase in accordance with this specification.

B. **Supplementary Construction Schedule Information:** Include in schedule of construction activities HVAC duct ruff-in, sequence of finishes applications, and operation of HVAC equipment in addition to construction schedule. Schedule information shall be provided for each HVAC zone.

1. An HVAC zone is that part of any floor area served by a single air handling unit.

2. Indicate and schedule types and durations of temporary HVAC operation proposed. Show schedule for commissioning procedures and all temporary usages of building mechanical systems, identifying types of filtration used and schedule of filter replacement and change outs.

C. **Material Safety Data Sheets (MSDSs):** Provide MSDSs on all Type 1 Finishes and carpet systems.

D. **Final Construction Products Lists:**

1. Submit list of proposed indoor construction and finishing products.

2. Include strategies for minimizing use of wet products.

3. Obtain approval by Project Architect prior to installation of products.

E. **Indoor Air Quality Test Report:**

1. Provide copies of Indoor Air Quality Test Report from Indoor Environmental Consultant.

2. Include in report:
 a. Study design including methodology for determination of air sampling locations and duration of sampling.
 b. Summary of sampling and analytical methods employed.
 c. Copy of field sampling logs.
d. Summary of methods and results used to determine that ventilation system hours operated, start and stop times, and outside airflow rates supplied to the facility, any air quality test, air test methodology, and duration of air testing.

e. Laboratory analytical data for each contaminant and summary table showing compliance with specified criteria.

1.07 QUALITY ASSURANCE

A. Finishes Installation Scheduling: As part of the Pre-construction Conference, the contractor will discuss the Supplementary Construction Schedule required under this section. The purpose of this agenda item is to assure understanding of the importance of sequencing of finishes to the overall Indoor Air Quality of the facility and to secure preliminary approval of the Owner for scheduling and installation requirements for on-site work.

B. Provide written notification of product requirements to subcontractors and suppliers of interior construction and finishing products.

C. Indoor Environmental Consultant Qualifications:
 1. GT employ and pay for an Indoor Environmental Consultant to perform specified indoor air quality testing.
 2. Minimum 5 years of experience in conducting indoor environmental quality evaluations of non-industrial buildings.
 3. Retain Certified Industrial Hygienist (CIH) on staff to review and sign test reports.

1.08 DELIVERY, STORAGE AND HANDLING

A. Storage Area:
 1. Designated secure storage area to facilitate protection of stored absorptive products.
 2. Clearly identify storage area. Keep dry, clean, and orderly; prevent contamination of products.
 3. Monitor storage areas for contamination; correct problems and implement preventative measures.

B. Products:
 1. Protect absorptive materials from moisture damage before, during, and after installation.
 2. Immediately remove products exhibiting stains, mold, mildew, or other evidence of water or moisture damage from site.

1.09 WORK INCLUDED

A. This section defines special construction scheduling/sequencing requirements and procedures necessary to assure achievement of designed Indoor Air Quality (IAQ) levels for the completed project required by the Construction IAQ Management Plan developed by the Contractor.

 1. Scheduling - Special construction scheduling involves defined and controlled sequencing of finishes applications to ensure dissipation of emissions from finishes that off-gas significant quantities of harmful material during curing, to separate these effects from the installation of adsorptive materials that would act as a "sink" for storage and subsequent release of these unwanted substances into building spaces and mechanical systems after project occupancy.
PART 2 - PRODUCTS

2.1 GENERAL

A. Interior Construction and Finishing Products; in purchasing products, give preference to:

1. Products designed and manufactured in manner to produce least harmful and irritating effects.

2. Products certified by GREENGUARD Environmental Institute as Low Emitting. For products that are not GREENGUARD Certified, provide a test, which at maximum is performed one year prior to installation, to ensure conformance to GREENGUARD standard emission values.

3. Products providing lowest practical yet technologically achievable emissions of particulates and chemical vapors, as defined in following paragraphs.

B. Maximum Chemical emission Values for Products In Commercial or Retail Buildings:

1. Emission rate calculations: Assume 32 cubic meters as volume for determination of product loading.

2. Product emission rates and modeling for predicted exposure concentrations: As measured in milligrams/square meter per hour (mg/m² • hr) at anticipated loading (square meter/cubic meter [m²/m³] within building. Predicted indoor concentrations shall be based on building modeling parameters of 0.72 air changes per hour (ACH). The product shall produce indoor air concentration levels less than the amounts specified for each substance within seven (7) days of installation.

3. Total VOC emission rate: Maximum total volatile organic compounds (VOC) of 0.05 milligrams/cubic meter (mg/m³).

4. Total aldehydes: Maximum 0.1 parts per million (ppm).

5. Formaldehyde: Maximum 0.05 parts per million (ppm).

6. 4-Phenylocyclohexene (4-PC): Maximum 0.0065 milligrams/cubic meter (mg/m³) or 0.1 parts per billion (ppb).

7. Styrene: Maximum 0.07 milligrams/cubic meter (mg/m³).

8. For individual Volatile Organic Compounds (VOCs) not listed above: Shall produce an air concentration level less than 1/10th of the Threshold Limit Value (TLV) at the anticipated product loading in the building within seven (7) days of installation.

9. Regulated pollutants: Maximum air concentration as promulgated by National Ambient Air Quality Standard for primary and secondary outdoor air pollutants.

10. Identified carcinogens and reproductive toxins: Below levels of no significant risk according to evaluation protocols established by EPA or approved State and public health organizations.

C. Maximum Chemical and Particle emission Values for Products In Educational, Daycare, Healthcare, or Otherwise Sensitive Environments:

1. Emission rate calculations: Assume 231 cubic meters as volume for determination of product loading.

2. Product emission rates and modeling for predicted exposure concentrations: As measured in milligrams/square meter per hour (mg/m² • hr) at anticipated loading (square meter/cubic meter [m²/m³] within building. Predicted indoor concentrations shall be
based on building modeling parameters of 0.9 air changes per hour (ACH) and a 0.9 ventilated volume fraction. The product shall produce indoor air concentration levels less than the amounts specified for each substance within seven (7) days of installation except for formaldehyde. Formaldehyde criteria are established so that emission levels reach 0.014 ppm (13.5 ppb) within 14 days of installation (meeting CA 1350 requirements).

3. Total VOC emission rate: Maximum total volatile organic compounds (VOC) of 0.022 milligrams/cubic meter (mg/m3).

4. Total aldehydes: Maximum 0.043 parts per million (ppm).

5. Formaldehyde: Maximum 0.0135 parts per million (ppm) within 14 days of installation.

6. Total Phthalates: Maximum 0.01 milligrams/cubic meter (mg/m3). Total phthalates are defined as the total response of a specific target list of phthalates including dibutyl (DBP), diethylhexyl (DEHD), diethyl (DEP), butylbenzyl (BBP), di-octyl (DOP), and dimethyl (DMP) phthalates (conducted using a modified phthalate specific analytical method, OSHA 104).

7. Total Particles: Maximum 0.02 milligrams/cubic meter (mg/m3). This is applicable only to fibrous, particle-releasing products with exposed surface area in air streams (determined using a “forced air” test with specific test method).

8. For individual Volatile Organic Compounds (VOCs) not listed above: Shall produce an air concentration level less than 1/100 of the Threshold Limit Value (TLV) and less than ½ of the California Chronic REL at the anticipated product loading in the building within seven (7) days of installation.

PART 3 - EXECUTION

3.01 PREPARATION

A. Certify in writing to the GT’s Representative that interior environmental control has been implemented as specified below and that required conditions are being maintained, and obtain the Owner’s Representative's approval before starting installation of interior finishes.

B. Coordination: The Contractor is responsible to schedule and coordinate the work of all finishes installers to assure compliance with the requirements of this specification section.

3.02 CLEANING DURING CONSTRUCTION

A. Remove accumulated water as soon as possible. Keep work areas dry. Porous materials such as insulation shall be protected from moisture. Porous materials that get wet shall be dried out completely—immediately after moisture is observed. Porous items such as duct insulation that remain damp for more than a few hours shall be replaced. Equipment such as terminal units, which have duct insulation in the air stream, shall be stored on pallets (away from water) and shall be sealed with plastic prior to installation. Before installation, check for possible damage to equipment from high humidity. Repair or replace any damaged equipment.

B. Suppress dust in the construction area with wetting agents or sweeping compounds. Regularly clean the dust from the site using a damp rag, wet mop or vacuum equipped with a high efficiency particulate filter or wet scrubber. Remove spills or excess applications of solvent-containing products as soon as possible.

C. If weather or plumbing leaks result in interior of building becoming wet:

1. Ensure that building is properly dried out prior to installation of any additional materials into the space.
2. Inspect installed materials for mold and mildew.
3. Affected materials less than 10 square feet in area: Remediate materials according to accepted industry practices.
4. Affected materials 10 square feet or more in area: Employ certified remediation firm to remove materials from site.

D. For projects incorporating new construction in an existing space, follow the procedures outlined in the Sheet Metal and Air Conditioning National Contractors Association (SMACNA) IAQ Guidelines for Occupied Buildings Under Construction, Chapter 3, ANSI/SMACNA 008-2008 (Chapter 3).

3.03 FINAL CLEANING
A. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion:
B. Remove labels that are not permanent.
C. Clean transparent materials, including mirrors. Remove excess glazing compounds. Replace chipped or broken glass.
D. Clean exposed finishes to a dust-free condition, free of stains, films, and foreign substances. Sweep concrete floors with a broom to ensure cleanliness.
E. Vacuum carpeted surfaces and wax resilient flooring.
G. Clean Project site, yard, and grounds, in areas disturbed by construction activities. Sweep paved areas; remove stains, spills, and foreign deposits.

3.04 INTERIOR ENVIRONMENTAL CONTROL
A. If the HVAC system is utilized during construction, provide and maintain controlled interior environment in accordance with the following requirements before beginning installation of interior finish.
 1. The supply air system must have MERV 8 filters in place. Filters shall fit tightly together and shall have no gaps between filters. Damaged filters shall be replaced immediately. Integrity of the filters shall be checked daily from initial start-up until the final punch list is complete.
 2. Return air openings shall have MERV 8 filter media installed during construction.
 3. Replace construction air filters with clean MERV 8 air filters as needed until building flush-out. Clean exposed surfaces of diffusers, registers and grilles prior to occupancy.
 4. Install final filters at beginning of building flush-out.
B. Schedule shipment and delivery of products based on actual construction progress to minimize time products are stored on site.
C. Prepare and staff building site for delivery of products.
D. Inspect products upon delivery for conformance to Final Construction Materials List and to ensure that they are free from water and moisture damage and properly stored.
E. Use the least practical amount of wet materials.
F. Do not install dry materials until wet materials have been installed and allowed to dry to greatest extent practical.

G. Choose drying times so that specified pollutant emission rates are achieved prior to installation of dry materials.

H. Install solvent containing materials during periods during which building is unoccupied. Schedule installation as early as possible during construction to allow for maximum off-gassing prior to building occupancy or re-occupancy.

I. Install high-VOC emitting products prior to installation of porous and fibrous products, or protect with polyethylene sheeting, properly sealed.

J. Complete installation of interior finishing materials two to four weeks prior to building occupancy. Continuously flush out building with fresh air for two to four weeks.

K. Provide temporary ventilation during touch-up operations; extend building flush-out for minimum of four days after touch-up is complete.

3.05 OPERATIONS OF HVAC SYSTEMS DURING CONSTRUCTION IN OCCUPIED BUILDINGS

A. Depressurize construction area at rate at least 10 percent greater than rate of supply or pressurize existing spaces, whichever is more feasible.

B. Erect supplemental containment barriers if pressurization is not adequate to control construction dust and odors in occupied areas.

C. Ensure that construction equipment and staging areas are away from air intakes for existing construction.

D. Temporarily seal intake dampers for existing space when high-emitting construction activities are performed near outdoor air intakes for existing construction.

E. During demolition or construction in existing spaces:
 1. Do not operate building HVAC systems in affected areas.
 2. Temporarily seal supply and return openings with plastic sheeting.
 3. If system must be operational during demolition or construction, install temporary MERV 8 filters in return openings in accordance with LEED Guidelines; maintain in clean condition.

3.06 BUILDING FLUSH-OUT

A. If weather conditions permit, upon completion of construction, but prior to occupancy, contractor shall perform a flush-out of the building utilizing the HVAC system. The flush-out shall supply a minimum 14,000 CFM/ft² of outside air to the building prior to occupancy. Throughout flush-out period outside air shall maintain a temperature of at least 60°F and relative humidity no higher than 60%.

B. If 14,000 CFM/ft² of outside air cannot be supplied to the building prior to occupancy, a minimum of 3,500 CFM/ft² of outside air shall be provided. Following occupancy, outside air shall be supplied constantly while occupied at a rate of no less than 0.3 CFM/ft² until the balance of the 14,000 CFM/ft² has been supplied. During each day of flush-out during occupancy, flush-out shall begin no less than 3 hours prior to occupancy and be continuous throughout occupied period.
C. Following completion of interior finishes and installation of new furnishings, flush building with 100 percent clean outdoor air for two to four weeks prior to occupancy. If time does not permit a two to four week flush-out period, the design and construction team shall designate whatever time is available for building flush (even if it is as minimal as 24 hours).

D. Install new MERV 8 filtration media prior to beginning the flush-out procedure. After flush-out, install new MERV 8 filtration media, except for those filters processing only outdoor air.

3.07 INDOOR AIR QUALITY TESTING

A. Perform testing after completion of construction and installation of new furnishings, but before Owner occupancy, using protocols established by reputable standard setting or method development organizations such as state and federal agencies and reputable nongovernmental organizations such as the GREENGUARD Environmental Institute or ASTM.

B. Conduct testing prior to Owner occupancy but during normally occupied hours.

C. Operate building HVAC system at normal daily start and stop times at minimum outside airflow for occupied mode for duration of testing.

D. Number of Air Sampling Locations: Minimum of one per 25,000 square feet or for each contiguous floor area, and no less than two samples. Include areas with least ventilation and greatest presumed source strength.

E. At each location, collect samples at to 6 feet above floor over minimum 4 hour period.

F. Demonstrate that contaminant concentrations do not exceed following maximum concentration limits:

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Maximum Concentration Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide *</td>
<td>10,300/ventilation rate</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>9 ppm and maximum 2 ppm above outdoor levels</td>
</tr>
<tr>
<td>Total Volatile Organic Compounds (TVOC)</td>
<td>Maximum 500 micrograms/cubic meter</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Maximum 27 parts per billion</td>
</tr>
<tr>
<td>4-Phenylcyclohexene (4-PCH)</td>
<td>Maximum 6.5 micrograms/cubic meter</td>
</tr>
<tr>
<td>Other Individual VOC’s</td>
<td>Below odor and/or sensory irritation threshold and maximum 1/10 TLV</td>
</tr>
<tr>
<td>Total Aldehydes</td>
<td>Maximum 100 parts per billion</td>
</tr>
<tr>
<td>Total Particles (PM 10)</td>
<td>Maximum 50 micrograms/cubic meter</td>
</tr>
</tbody>
</table>

* Carbon dioxide monitoring is required only if building is occupied during testing. Ventilation rate is outdoor air requirement per person. Carbon dioxide measurement is differential between indoor and outdoor conditions, based on occupancy type as defined by ANSI/ASHRAE 62.1 and 62.2-2007.

G. For each sampling location where maximum concentration limit is exceeded, conduct additional flush-out with outside air and retest specific contaminant until maximum concentration limit is achieved. Collect samples for retesting from original sampling location.
END OF SECTION
015713- Temporary Erosion and Sediment Control

1.01 GENERAL

A. This section addresses requirements for erosion and sediment control during construction.

B. The design professional and the contractor engaged by Georgia Tech on a project specific basis are to follow the rules and regulations set up by the State of Georgia Environmental Policy Act and enforced by the Georgia Department of Natural Resources Environmental Protection Division and the City of Atlanta.

C. The City of Atlanta is the local permitting authority having jurisdiction for the issuance and enforcement of Land Disturbance Permits on the Georgia Tech campus. The design professional engaged by Georgia Tech is responsible for obtaining the site construction and stormwater management system plan approvals necessary for issuance of a Land Disturbance Permit on a project specific basis.

D. For project sites of less than one-acre and not requiring a Land Disturbance Permit on any other basis, the construction documents prepared by the design professional are to include erosion and sediment control plans and specifications that indicate the minimum measures to be implemented by the construction contractor to provide erosion and sediment control during construction and for site stabilization at the end of construction.

E. Design professional is to coordinate preparation of the erosion, sedimentation and pollution control plans with the site grading plans, the stormwater management plans, and the landscape planting plans.

2.01 PERMITTING

A. The City of Atlanta is the local permitting authority having jurisdiction for the issuance and enforcement of Land Disturbance Permits on the Georgia Tech campus. The design professional is responsible for all permitting coordination with the City of Atlanta including preparing the permit application, submittal of plans and permit applications, addressing review comments, and providing copies of the plans as required for permit issuance on a project specific basis.

B. The design professional is responsible for preparing the Notice of Intent (NOI) for NPDES Stormwater Permitting, coordinating to obtain the Owner and Operator signatures, and submitting the NOI to the Georgia Environmental Protection Division. These services shall be included in the design professional’s scope of services and fee for the Construction Administration phase on a project specific basis.

C. Per the NPDES permit, a BMP inspection must be conducted by the licensed professional that prepared the Erosion, Sedimentation and Pollution Control Plan (ESPCP) 7-days after initial construction begins. The purpose of the inspection is to ensure that best management practices (BMPs) had been properly installed and maintained, per the approved Erosion, Sedimentation and Pollution Control Plans (ESPCP). These services shall be included in the design professional’s scope of services and fee for the Construction Administration phase on a project specific basis.

D. Georgia Tech may elect to have a representative of the Office of Facilities Design and Construction participate in the 7-day inspection. The design professional who conducts the 7-day inspection is to give Georgia Tech’s designated project manager at least 24 hours advance notice of the date and time scheduled for the inspection. Advance notice is to be provided by e-mail.
3.01 QUALIFIED PERSONNEL

A. The construction plans, the contract documents and the technical specifications prepared for the project are to indicate that the construction contractor is to have a certified Worksite Erosion Control inspector with current Level 1A certification on site at all times that construction operations are underway (i.e. during the hours of operation).

B. The technical specifications are to indicate proof of current certification for the contractor’s designated Worksite Erosion Control inspector as a required submittal.

4.01 SUSTAINABLE CONSTRUCTION

A. Georgia Tech has the stated objective for the design and construction of all building projects to reduce impacts on the environment surrounding the project. As indicated in Paragraph 1.0 above, for project sites of less than one-acre and not requiring a Land Disturbance Permit on any other basis, the construction documents prepared by the design professional are to include erosion and sediment control plans and specifications as needed to meet the requirements of Georgia EPD Manual for Erosion and Sediment Control Sixth Edition 2014, and the 2003 EPA Construction General Permit or any local standards and codes, whichever is more stringent. The plan must describe erosion and sediment control measures to accomplish these objectives:

1. Prevent loss of soil by storm water runoff and/or wind erosion during construction activities.

2. Protect topsoil by stockpiling for reuse

3. Prevent sedimentation of storm sewers or receiving streams.

4. Prevent pollution of the air with dust and particulate matter.

B. Placement of erosion and sediment control measures is to be coordinated with the site planning, earthwork and storm drainage design to the maximum extent feasible to conserve existing natural areas and prevent loss of soil by storm water runoff and/or wind erosion during construction activities. Erosion and sediment controls measures must meet or exceed the requirements of Georgia EPD Manual for Erosion and Sediment Control Sixth Edition 2014 and the 2003 EPA Construction General Permit or any local standards and codes, whichever is more stringent.

END OF SECTION
015721- Indoor Air Quality (IAQ) Design and Performance Requirements

1.01 GT IAQ REQUIREMENTS
 A. Construction Indoor Air Quality, During Construction
 B. Construction Indoor Air Quality, Before Occupancy
 C. Low Emitting Materials

2.01 REFERENCE STANDARDS
 A. ASHRAE 52.2 – Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size; 2007
 B. ASHRAE 62.1 – Ventilation for Acceptable Indoor Air Quality; 2007
 C. ASHRAE 129 – Measuring Air-Change Effectiveness; 1997
 F. South Coast Air Quality Management District (SCAQMD) Rule #1168
 G. Green Seal Standard 36

3.01 DEFINITIONS
 A. Absorptive Materials: Gypsum board, acoustical ceiling tile and panels, carpet and carpet tile, fabrics, fibrous insulation, and other similar products.
 B. Contaminates: Gases, vapors, regulated pollutants, airborne mold and mildew.
 C. Particulates: Dust, dirt and other airborne solid matter.
 D. Wet Work: Concrete, plaster, coatings and other products that emit water vapor or volatile organic compounds during installation, drying or curing.

4.01 PRODUCTS
 A. VOC restricted products within weatherproofing of the building
 B. Adhesives, sealants, sealer coatings
 1. General adhesives and sealants should comply with SCAQMD Rule # 1168, architectural sealants have a VOC limit of 250 g/L.
 2. Aerosol adhesives should comply with Green Seal Standard 36, 55% VOC by weight.
 C. Carpet, carpet pad, carpet tile
 1. Products shall be certified by the Carpet and Rug Institute Green Label Plus program
 D. Paints and coatings
 1. General paints and coatings shall comply with Green Seal Standard 11, generally 50 g/L.
 2. Anti-corrosive paints and coatings shall comply with Green Seal Standard 03, generally 250 g/L.
 3. Clear coatings should comply with SCAQMD Rule #1113, generally 27 ppb.
E. Hard surface flooring
 1. Products shall be certified by FloorScore.
 2. Flooring adhesives and grouts shall comply with SCAQMD Rule #1113, generally 50 g/L.
F. Composite wood and agrifiber products used either alone or as part of another product.
 1. No urea-added formaldehyde
G. Auxiliary Air Filters: MERV 8 during construction; MERV 13 prior to occupancy

5.01 PROCEDURES
A. Follow Yellow Book Section 01 35 46 and develop an IAQ Management Plan that
 1. Identifies construction activities and other potential sources of odor and dust
 2. Identifies areas likely affected by odors and dust and methods of control
 3. Describes construction ventilation, including type and duration, use of permanent HVAC systems, types of filters, and replacement of filters
 4. Identifies interior finishes that generates odors, moisture, vapors or is susceptible to absorption of odors and vapors, indicate air handling zone, sequence of application, and curing times
 5. Before occupancy, follow one of these two options
B. Follow Yellow Book Section 01 35 46 and perform a building flush out that provides 14,000 cubic feet of outdoor air per square foot at internal temperature of at least 60 degrees with a relative humidity of less than 60%
C. Conduct baseline IAQ testing after construction ends and prior to occupancy using testing protocols consistent with the EPA Compendium of Methods for the Determination of Air Pollutants in Indoor Air or the ISO method listed in the table below. Testing must be done in accordance with one standard; project teams may not mix requirements from the EPA Compendium of Methods with ISO

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Maximum Concentration</th>
<th>EPA Compendium method</th>
<th>ISO method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>27 parts per billion</td>
<td>IP-6</td>
<td>ISO 16000-3</td>
</tr>
<tr>
<td>Particulates (PM10)</td>
<td>50 micrograms per cubic meter</td>
<td>IP-10</td>
<td>ISO 7708</td>
</tr>
<tr>
<td>Total volatile organic compounds</td>
<td>500 micrograms per cubic meter</td>
<td>IP-1</td>
<td>ISO 16000-6</td>
</tr>
<tr>
<td>(TVOCs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Phenylcyclohexene (4-PCH)*</td>
<td>6.5 micrograms per cubic meter</td>
<td>IP-1</td>
<td>ISO 16000-6</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>9 parts per million and no greater than 2 parts per million above outdoor levels</td>
<td>IP-3</td>
<td>ISO 4224</td>
</tr>
</tbody>
</table>

* This test is only required if carpets and fabrics with styrene butadiene rubber (SBR) latex backing are installed as part of the base building systems.
D. For each sampling point where the maximum concentration limits are exceeded, conduct an additional flush-out with outside air and retest the noncompliant concentrations. Repeat until all requirements are met. When retesting noncompliant building areas, take samples from the same locations as in the first test, although it is not required.

1. All measurements must be conducted prior to occupancy, but during normal occupied hours with the building ventilation system started at the normal daily start time and operated at the minimum outside air flow rate for the occupied mode throughout the test.

2. All interior finishes must be installed, including but not limited to millwork, doors, paint, carpet and acoustic tiles. Movable furnishings such as workstations and partitions should be in place for the testing, although it is not required.

3. The number of sampling locations will depend on the size of the building and number of ventilation systems. The number of sampling locations must include the entire building and all representative situations. Include areas with the least ventilation and greatest presumed source strength.

4. Air samples must be collected between 3 and 6 feet (between 1 and 2 meters) from the floor to represent the breathing zone of occupants, and over a minimum 4-hour period.

END OF SECTION
017419- Construction Waste Management and Disposal

1.01 WASTE MANAGEMENT REQUIREMENTS

A. Georgia Tech requires Construction and Demolition (C&D) waste recycling, salvage, and disposal. Projects involving construction and demolition of buildings and other structures that generate waste associated with the construction phase shall generate the least amount of trash and waste economically feasible. Construction and Demolition waste includes construction products and material waste, construction product and materials packaging, and construction office waste. Hazardous wastes shall be disposed with in accordance with federal, state, and local laws and regulations as well as applicable construction codes; and that the most stringent requirements are followed.

B. Designers shall provide specifications that establish clear direction to contractor’s management of C&D for the recycling of all nonhazardous construction and demolition debris. Design specifications shall direct the construction team to develop a construction waste management plan for Designer and GT approval. The construction waste management plan must identify the materials (listed below in section C) that will be diverted from landfills. This plan must also address whether the recycled materials will be sorted on-site or leave the site commingled and provide a tracking methodology the General Contractor will implement to ensure C&D materials to be recycled reach the intended recycling centers, and specific reporting requirements that demonstrate achievement of GT goals of diverting eighty five (85%) percent of the C&D waste stream away from landfills. C&D waste consisting of packaging (paper, cardboard, boxes, plastic sheet and film, wood crates, plastic pails, and polystyrene) shall be 100% recycled.

C. Required Recycling, Salvage and Reuse: The following may not be disposed of in landfills or by incineration:

1. Aluminum and plastic beverage containers
2. Corrugated cardboard
3. Wood pallets
4. Clean dimensional wood: may be used as blocking or furring
5. Untreated wood studs, joists, plywood, oriented strand board, wood paneling and trim, land clearing debris, including brush, branches, logs and stumps
6. Concrete: Crush, maximum size of ¾” and use as aggregate, sub-base material or fill
7. Bricks: Crush to a maximum size of ¾” and use as landscape cover, sub-base material or fill
8. Concrete masonry units: May be used on project if whole, or crushed, maximum size of ¾” and used as sub-base material or fill
9. Asphalt paving: May be recycled for project or for other projects
10. Metals, including packing banding, metal studs, sheet metal, structural steel, piping, reinforcing bars, door frames and other items made of steel, iron, galvanized steel, stainless steel, aluminum, copper zinc, lead, brass and bronze
11. Glass
12. Gypsum drywall and plaster
13. Carpet, carpet cushion, carpet tile and carpet remnants, both new and removed
14. Rigid foam insulation
15. Windows, doors and door hardware
16. Plumbing fixtures
17. Mechanical and electrical equipment
18. Florescent lamps and light bulbs
19. Acoustical ceiling tile and panels
20. Roof ballast and membrane
21. Packaging
Georgia Tech C&D Recycling Report

<table>
<thead>
<tr>
<th>Project Name</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C&D Activity Reporting

<table>
<thead>
<tr>
<th>Material</th>
<th>Category</th>
<th>Quantity</th>
<th>Company Name</th>
<th>Cost(Revenue)/Ton</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Waste</th>
<th>% Salvaged</th>
<th>% Recycled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Percentage Diverted from Landfills

Please include copies of weight tickets and other supporting documentation.

Date Received: Date Recorded:

Received By: Recorded By:

END OF SECTION
017801 Commissioning Closeout Procedures

1.01 INTRODUCTION
A. The correct documentation at the end of a project is critical to the operation and maintenance of the finished project. This section further defines the requirements of the project team to deliver to Georgia Institute of Technology (GT) the following documentation necessary for operation, maintenance and future modifications to the project.

1.02 DISCRITION
A. Closeout includes completion of commissioning requirements in preparation for final completion and final payment. Completion of commissioning activities is directly related to final acceptance and documentation must be completed in accordance with contract documents.

B. The section includes the following administrative and procedural requirements:
1. O&M format
2. O&M documentation
3. Guidance in preparing and submitting information
4. Development and delivery process
5. Updating of changes

1.03 PREREQUISITIES TO FINAL ACCEPTANCE
A. All Test, Adjust, and Balance work and the commissioning requirements contained in the OPR/CFR and project contract document must be complete prior to final acceptance, unless approved in writing by GT. Exceptions to this are any required seasonal or approved deferred testing. This includes for all building systems and assemblies, but is not limited to:
1. Completed and signed manufacturers start-up forms and Commissioning Construction Checklist documentation
2. Receipt of requested trend log data
3. Receipt of final approved TAB report
4. Completion of commissioning testing
5. Completion of training of Owner’s personnel in accordance with Section 01 79 00 Demonstration and Training required and accepted by Owner.
6. Submission of the approved O&M manuals
7. All identified deficiencies have been corrected or are approved by the Owner to be accepted from this milestone. This includes resolution of deficiencies noted in the commissioning issues log.

B. Single line drawing illustrating the following:
1. HVAC water and air side of the complete system illustrating the path of an air or water molecule through the entire path including location of system components (filters, fans/pumps/ sensors, valves, dampers, etc. used to control, operate, and maintain the system on one sheet of paper or electronic graphic.
2. Plumbing system domestic water system illustrating the distribution of water molecule through the entire path including location of system components of isolation and control valves, back flow preventers, sensors, water hammer arrestors, trap primers, cleanouts,
pumps, expansion tanks, etc. required to control, operate, and maintain the system on one sheet of paper or electronic graphic.

3. Fire suppression system illustrating the distribution of water molecule through the entire path including location of system components of isolation and control valves, back flow preventers, fire pump, fire department connection, and post valve indicator required to control, operate, and maintain the system on one sheet of paper or electronic graphic.

C. The Owner will determine the date of final acceptance after reviewing the CxP’s recommendation for final acceptance.

D. Commissioning activities are non-compensable and cannot be a cause for delay claims.

1.04 RECORD DOCUMENT SUBMITTALS

A. Installation, O&M manuals: Submit three (3) complete sets of O&M manuals in printed and electronic media; two (2) printed and electronic media retained by the Owner and one (1) printed and electronic media retained by the Contractor. Electronic media will be on a CD-ROM or DVD-ROM disk. Electronic media shall be a searchable pdf document. The Table of Contents shall have links which will provide direct connection to the sections of the pdf.

B. Submittals shall include, but not be limited to, the following information:

1. Building Enclosure
 a. Submittals (including all shop drawings) of the building enclosure elements shall be provided in accordance project contract documents for enclosure components and systems.
 b. Description of enclosure components accompanied with easily read drawings illustrating each component and component name.
 c. Completed as-built drawings of all enclosure components.
 d. Recommended installation instructions (installation manuals) and maintenance procedures and their recommended frequency for this site-specific application.
 e. Original purchase order number; date of purchase; name, address, and phone number of vendor; warranty information.
 f. Technical data sheets for the materials used to construct the building enclosure (wind load limits, resistance to corrosion, permeability, etc.).
 g. Provide manufacturer’s test results for components and assemblies illustrating compliance with design requirements including associated test protocols.
 h. Completed field checklists for all building enclosure components and systems.
 i. Detailed warranty documentation for all building enclosure components (roofs, wall cladding, fenestrations, doors, etc.).

2. HVAC Systems
 a. Submittals (including all shop drawings) in accordance project contract documents.
 b. Completed as-built drawings of all HVAC systems and components.
 c. Complete installation manuals and start up information for the type and model number for each system, equipment and component provided.
 d. Additional information regarding function of the equipment, not already contained in the Operation and Maintenance, including functional parameters (input, output) at
design load and part loads conditions, manufacturer’s recommendations for calibration of sensors contained in equipment installed, and allowable operational parameters (operational minimums). Information shall be included the submittal table of contents.

e. Recommended maintenance procedures and their recommended frequency for this site-specific application.

f. Recommended list of spare parts, part numbers, and the place(s) from which they can be obtained.

g. Original purchase order number; date of purchase; name, address, and phone number of vendor; warranty information.

h. Any other information needed for the preparation of documents supporting the management of operation and maintenance programs.

i. As applicable: Provide manufacturer’s test results for equipment supplied including test protocols.

j. Complete as-built control drawings with points list, valve schedules, schematics, control system architecture and full sequences of operation.

k. Seasonal start-up and shutdown, manual and restart operation procedures

3. Plumbing Systems

a. Provide submittals (including all shop drawings) in accordance project construction documents.

b. Provide completed as-built drawings of all plumbing systems including location of isolation and control valves, sensors, water hammer arrestors, trap primers, cleanouts, pumps, expansion tanks, etc.

c. Installation, operation and maintenance manuals including start up information for the type and model number for each system, equipment and component provided.

d. Provide detailed illustration, e.g. exploded diagram of components, fixtures, vales, etc. installed. Information shall be easily read drawings accompanied by a clear description of each component.

e. Description of function, manufacture recommended maintenance schedule, allowable operational parameters, relevant start-up, functional operating parameters (input, output). This information shall be included the submittal table of contents. Recommended list of spare parts, part numbers, and the place(s) from which they can be obtained.

f. Original purchase order number; date of purchase; name, address, and phone number of vendor; warranty information.

4. Fire Suppression System

a. Building floor plan indicating location of fire sprinkler emergency shut off valve.

5. Electrical Systems

a. Installation, operation and maintenance manuals, including start up, and programming information for the type and model number for each electrical system, equipment and component provided.

b. Completed as-built drawings of all electrical systems including location of junction/pull boxes, lighting controls, etc., modifications to distribution panel, updated distribution
schedules, power distribution, lighting circuits, etc. Short circuit analysis and final breaker settings for electrical distribution system.

c. Recommended maintenance procedures and their recommended frequency for this site-specific application.

d. Recommended list of spare parts, part numbers, and the place(s) from which they can be obtained.

e. Original purchase order number; date of purchase; name, address, and phone number of vendor; warranty information.

f. As applicable: Provide manufacturer’s test results for equipment supplied including test protocols.

g. Provide Fire Alarm System Documentation as required by NFPA 72 Inspection, Testing and Maintenance requirements including but not limited to record of completion or revision to the original record of completion.

2.01 PREPARATION

A. The commissioning process requires detailed O&M documentation. Documentation required by this section and Yellow Section 019100 shall be provided in accordance with ASHRAE, a complete O&M documentation package shall include the following documents:

1. O&M Documentation Directory
2. Emergency Information
3. Operating Manual
5. Test Reports
6. Construction Documents

B. All O&M submittals are to be developed in accordance with the detailed instructions provided in the ASHRAE Guideline 4—2008, Preparation of O&M Documentation for Building Systems.

C. The GC shall compile O&M manuals for every piece of equipment and components of the commissioned building systems and assemblies including building enclosure documentation in the following format:

1. Quantity: 3 complete sets, each set containing a printed version and an electronic version of O&M manuals for every piece of equipment and building operating or electrical system.

2. Format: 8 ½” x 11” loose leaf binders with electronic copy on electronic media. Each binder shall be clearly labeled on the spine. Use as many as required. Do not overload binders. There shall be dividers with permanently marked tabs of card stock separating each section and sub section. Tab labels shall not be handwritten. Electronic media will be on a CD-ROM or DVD-ROM disk. Electronic media shall be a searchable pdf document. The Table of Contents shall have links which will provide direct connection to the sections of the pdf.

3. There shall be a title page and table of contents in the front of each binder noting the contents.

4. There shall be a main tab for each specification section in each binder.

5. Directly after the specification section number tab, there shall be the equipment or component ID sub-tab for each piece of major equipment (or group, if small or numerous) or a component tag sub-tab for each building enclosure system. These sub-tabs shall be similar to the specification section tabs but of a different color.

6. Behind each equipment ID sub-tab or component tag sub-tab shall be the following
sections, in the given order, divided by a double weight colored sheet labeled with the title of the section.

a. Contractor: The first page behind the equipment or building enclosure component sub-tab shall contain the name, address and telephone number of the manufacturer and installing contractor and the 24-hour number for emergency service for all equipment or components in this section, identified by equipment, type, or manufacturer’s designation.

b. Submittal and Product Data: This section shall include all approved submittal data, cut sheets and appropriate shop drawings. If submittal was not required for approval, descriptive product data shall be included.

c. Project Manual Divisions 22, 23 and 26 O&M Instructions: These shall be the written manufacturer’s data with the model and features of this installation clearly marked and edited to omit reference to products or data not applicable to this installation. This section shall include data on the following:
 i. Installation, startup and break-in instructions.
 ii. All starting, normal shutdown, emergency shutdown, manual operation, seasonal changeover and normal operating procedures and data, including any special limitations.
 iii. O&M and installation instructions that were shipped with the unit.
 iv. Preventative maintenance and service procedures and schedules.
 v. Troubleshooting procedures.
 vi. A parts list, edited to omit reference to items which do not apply to this installation.
 vii. A list of any special tools required to service or maintain the equipment.
 viii. Performance data, ratings and curves.
 ix. Warranty, which clearly lists conditions to be maintained to keep warranty in effect and conditions that would affect the validity of the warranty.
 x. Any service contracts issued.

d. Project Manual Divisions 07 & 08 O&M Instructions: These shall be the written manufacturer’s data with the model and features of this installation clearly marked and edited to omit reference to products or data not applicable to this installation. This section shall include data on the following:
 i. O&M and installation instructions that were shipped with the unit.
 ii. Preventative maintenance and service procedures and schedules.
 iii. A parts list, edited to omit reference to items which do not apply to this installation.
 iv. A list of any special tools required to service or maintain the components.
 v. Warranty, which clearly lists conditions to be maintained to keep warranty in effect and conditions that would affect the validity of the warranty.

e. Supplemental Data: Prepare written text and/or special drawings to provide necessary information, where manufacturer’s standard printed data is not available and information is necessary for a proper understanding of fenestration system maintenance or operation and maintenance of materials or systems installed, or where it is necessary to provide additional information to supplement data included in the manual or project documents.

f. Divisions 23 and 26 Control Drawings: Include the control drawings for the piece of equipment and its components, including the sequence of operation. The security and CCs will provide this section. The drawings will be repeated in each contractor’s O&M submittals.

g. Specifications: This section is comprised of the component or system specification
section copied and inserted complete with all addenda.

h. System Description: This section shall include the individual equipment portion of the overall system Design Documentation Narrative, if available. It will contain simplified professionally drawn single line system diagrams on 8 ½ x 11 or 11 x 17 sheets, unless the system’s control drawing is deemed adequate by the CxP.

i. Preventive Maintenance Instructions: This section shall include condensed typewritten excerpts from the manufacturer’s written instructions for weekly, monthly, quarterly, annual, etc. maintenance. The principle contractor responsible of the division shall prepare these summaries. For division 23, the HVAC MECHC with help from the equipment supplier shall prepare the mechanical summary. It shall be prepared for all items listed under condensed operating instructions (below), plus package, window or through the wall AC units and electric unitary heating equipment.

7. A/E’s Contributions: The A/E’s have special contributions to the O&M manuals as described in Yellow Book Section 019100.

8. Commissioning Record and Testing Data: There will be a separate manual dedicated to documenting the commissioning process which will include all certifications and testing data and some repeating of O&M data. Description of this manual is found in Yellow Book Section 019100 and shall be prepared by the CxP.

D. The GC shall submit the O&M manuals for every piece of equipment and building enclosure system to the CxP for review 30 days prior to initial training.

END OF SECTION
017900 Demonstration and Training

1.01 INTRODUCTION

A. In accordance with Yellow Book Section 019100 General Commissioning Requirements
Georgia Institute of Technology (GT) requires their operation and maintenance (O&M) staff,
assigned to the project shall be thoroughly trained in all aspects of the building enclosure,
equipment and systems that serve the building. This section defines the required scope,
responsibilities, format and stages to be employed by the design, construction, and
commissioning teams needed to attain GT’s Demonstration and Training requirements.

B. Training shall be divided into three (3) stages:
 1. Training conducted during construction
 2. Initial training prior to final completion
 3. Final training approximately six (6) months after occupancy

1.02 OVERVIEW

A. Training shall include a summary of building enclosure, mechanical, electrical, and plumbing
systems, design, components and controls plus detailed instructions on the operation and
maintenance of equipment, all to be presented by Design Professionals, Contractors,
Manufacturers and/or equipment technical representatives as specified in this section.

B. The General Contractor (GC) shall have the overall responsibility for training. The Mechanical,
Electrical, Plumbing, Building Enclosure Contractors and other selected sub-contractors shall
participate and be responsible for the training related to their respective disciplines and areas of
work. For the requirements of this section, the word Contractor shall apply to all of the above
referenced contractors. Appropriate and selected Manufacturers, Manufacturers
Representatives, Factory Representatives, Vendors, Material Suppliers, etc. shall also
participate and be responsible for the training related to their respective disciplines and areas of
work. For the requirements of this section, the word Manufacturers/Vendor Group shall apply
to all of the above referenced individuals.

C. The Contractors and Manufacturers/Vendor Group shall be required to attend and participate in
Owner’s Staff Training, which, due to staged training events, may take a cumulative three (3)
or more working days depending on the size and complexity of the building and O&M staff
availability.

1.03 PREREQUISITES

A. During the project the Contractors and Sub-contractors shall be in compliance with Yellow
Book Section 019100 – General Commissioning Requirements, Section 017853 –
Commissioning Closeout Procedures, and the project contract documents.

1.04 SUBMITTALS

A. Training agendas developed by the CxP shall define the audience being trained and the general
scope of the training including the specific levels of training the contractors and vendors shall
provide.

 1. Levels can include:
 a. Overview and purpose of components, equipment or assemblies and required
 interactions of the trainees, warranty requirements, etc.
 b. Technical information regarding purpose, operation, and maintenance of the
 components, equipment or assemblies that are the focus of the training at an
intermediate level expecting serious malfunctions will be addressed by factory representatives or installing contractor.

c. Technical information regarding purpose, troubleshooting, and maintenance of the components, equipment or assemblies that are the focus of the training at a very detailed level expecting that almost all operation, service, and repair will be provided by the trainees.

2. Agenda defining the general subjects to be covered and the required duration of the training for each subject.

3. Training methods to be included by the trainers and associated training material to be provided by the trainers to the trainees.

B. Flowchart illustrating the training structure beginning with overview of all major systems, associated subsystems and components to the CxP and Owner for Owner approval.

C. Completed training agendas, selected trainer and their qualifications to CxP and Owner for Owner approval.

D. Copy of training material that will be provided to trainees by subject to CxP and Owner for Owner approval.

E. Draft composite of professionally produced training videos to CxP and Owner for Owner approval.

2.01 TRAINING MATERIALS

A. General: It shall be the Contractors responsibility to supply the following listed training materials for all Owner’s Staff attending training sessions.

1. A/V equipment as required for training

2. Building Systems and Assemblies including but not limited to Fenestration, Roofing, and Equipment Installation, Operation and Maintenance (O&M) manuals
 a. Manufacturer’s current printed installation, operation, maintenance and service instructions for all building systems and assemblies.
 b. Each trainee shall have ample access to each building system and assembly manual associated with the specific building system during training.

3. Equipment Operation and Maintenance (O&M) manuals
 a. Manufacturer’s current printed installation, operation, maintenance and service instructions for all commissioned equipment.
 b. Each trainee shall have ample access to each Equipment O&M manual during training.

4. Miscellaneous Training Material
 a. Any printed training literature or other informational sheets as appropriate to cover emergency shutdown for non-technical and technical personnel, warranty requirements, and contractor’s contact information.

5. Training manuals: The standard O&M manuals for the facility systems and any special training manuals will be provided for each trainee
 a. Training Manuals shall include detail descriptions of the subject matter for each session. The manuals will cover all control sequences and have a definitions section that fully describes all relevant words used in the manuals and in all software displays.

C. Project O&M Manuals
1. Approved Project O&M Manuals shall be complete and made available at the Initial Training session
 D. CDs and/or DVDs of previously recorded on-site training.
 E. Equipment manufacturer’s technician training videos.

3.01 TRAINING RESPONSIBILITIES
 A. General Contractor
 1. The GC shall be responsible for training coordination, scheduling and ensuring completion of training in accordance with this section.
 2. The GC shall be responsible for the professional video filming, editing, and production, of both the initial and final systems training sessions. Videotaping shall be conducted by a professional video production company with a minimum of 4 years’ experience. Each training as outlined in Table 1 shall be a separate segment which shall be reachable from the opening screen of the training video. The opening screen shall divide each trade (e.g. Building Enclosure, HVAC, electrical, etc.) as separate training segments which can be view in their entirety or by individual subsection comprising the subsystems, equipment, and components associated with more complex building systems. Submit one (1) copy to both the A/E and CxP for review and comment. Update/modify video training in response to comments received and re-submit for approval. Provide four (4) copies of the A/E and CxP approved DVD to the Owner. All video must be organized and separated by topic and each topic must be available within the home screen/chapter menu/scene selection menu on all DVDs.
 3. Manage the distribution and return of training agenda forms, provided by the CxP, documenting all training materials and instructors for each training session and return forms to CxP a minimum of four (4) weeks prior to scheduled date of training. Referenced forms are to be completed by Contractor(s), Design Professional and pertinent vendors.
 B. Building Enclosure, Roofing, & Fenestration Contractor, including all related sub-contractors shall:
 1. Work with the GC to coordinate, schedule and complete training in accordance with this section.
 2. Provide training including, but not limited to, the following topics:
 a. Overview of system, assembly, and components that provides a general understanding of how the systems, their elements interface with other systems, general assembly, and as a composite keep moisture and air from entering the building’s dry zone.
 b. Critical maintenance requirements needed to maintain the performance of the system, assembly, or specific components (sealants, weeps, flashing, etc.).
 c. Description and strategies to resolve typical issues encountered by owners with like installed enclosure system, assemblies and components.
 d. Ensure that the training provided provides detailed trouble-shooting and maintenance guidance at the component level.
 e. Provide the General Contractor with completed training agenda forms provided by CxP.
 C. Mechanical, Plumbing and Electrical Contractor including all related sub-contractor
 1. Provide the CxP with a training plan two (2) weeks before the planned training.
 2. Provide designated Owner’s personnel with comprehensive orientation and training in the
understanding of the mechanical and electrical systems and the operation and maintenance of each piece of mechanical and electrical hardware including, but not limited to, panelboards, switchboards, transformers, lighting controls, HVAC systems and equipment, etc.

3. Start training with classroom sessions followed by hands-on training on each piece of mechanical and electrical hardware, which shall illustrate the various nodes of operation, including startup, shutdown, etc.

4. Ensure that during any demonstration, should the system fail to perform in accordance with the requirements of the O&M manual or sequence of operation, the system will repaired or adjusted as necessary and the demonstration repeated.

5. Ensure that the appropriate trade or manufacturer’s representative shall provide the instructions on each major piece of mechanical and electrical hardware. Practical building operating expertise as well as in-depth knowledge of all modes of operation of the specific piece of hardware is required. More than one party may be required to execute the training

6. Fully explain and demonstrate the operation, function and overrides of any local packaged controls not controlled by the building automation system.

7. Furnish training videos used by equipment vendors/manufacturers to train their representatives

D. Manufacturers, Manufacturer’s Representatives, Factory Representatives, Vendors, Material Suppliers, etc.

1. Provide the respective MECHC and ELECC with a training plan three (3) weeks before the planned training.

2. The Manufacturer’s Group shall provide the designated Owner’s personnel training by qualified and knowledgeable (on the system and its use in the facility (representatives who shall present overviews of equipment, controls, function, operation and maintenance, normal use, etc. and shall be prepared to respond to questions and concerns from GT O&M staff and A/E representatives on their respective systems.

3. Provide O&M literature

E. Controls Contractor

1. Provide the General Contractor with completed training agenda forms from the CxP.

2. Provide the designated Owner’s personnel training on the control system including power transfer, monitoring condition, HVAC control, BAS, etc. The intent is to clearly and completely instruct the Owner on all the capabilities of the electrical, fire, security, and HVAC control systems.

3. Attend sessions other than the controls training, as requested, to discuss and explain the interaction of the control system as it relates to operation of the equipment being discussed.

F. Testing and Balancing Contractor

1. Go over the final TAB report, explaining the layout and meanings of each data type.
 a. Discuss any outstanding deficient items in control, ducting or design that may affect the proper delivery of air or water
 b. Identify and discuss any terminal units, duct runs, diffusers, coils, fans and pumps that are close to or are not meeting their design capacity.
 c. Discuss any temporary settings and steps to finalize them for any areas that are not finished.
 d. Provide any salient information that may be useful for facility operation relative to TAB.

G. Fire Suppression and Alarm Contractors.
1. Provide the General Contractor with completed training agenda forms from the CxP.
2. Fully explain the operation, function and overrides of fire panel and fire protection systems including detailed instructions on emergency shut down procedures.

1. Provide the General Contractor with completed training agenda forms from the CxP.
2. Fully explain the operation, function and overrides of closed circuit television monitoring and card access systems including detailed instructions on emergency operation procedures as specified in the project contract documents.
3. Training format and duration requirements specified in the project contract documents and those described within this section. The CxP shall attend and document that training for all systems has been accomplished per the aforementioned division 28 sections.

I. Design Professionals
1. Complete the appropriate portion of the training forms, provided by the CxP, and distributed by the GC and return forms to GC a minimum of three (3) weeks prior to the schedule date of training.
2. Provide the designated Owner’s personnel training including an overview and outline of the design intent of each system.
3. Observe and comment as appropriate at training sessions.

3.02 TRAINING FORMAT

A. The training sessions shall follow the outline in the Table of Contents of the O&M manual and illustrate, whenever possible, the use of the O&M manuals for reference.

B. The format and training agenda will be provided by the CxP and generally follows The Commissioning Process, ASHRAE Standard 202 - 2013. In general, the following training methods shall be used:

1. Walk-through: On site tours of the facility designed to familiarize the trainee with the location of equipment and the inter relationship with support systems, power, controls, shut-off, etc.
2. Hands-on Instruction: At selected pieces of equipment or systems with hands-on demonstration and instruction of the operation, maintenance and service of that equipment.
3. Classroom instruction: Typical classroom/lecture setting.
 a. Manufacturer training video presentation of equipment and system
 b. Demonstrate the use of the Manufacturer’s O&M manuals and illustrate where the verbal training information is found within the manual.
 c. Distribution and presentation of additional written training information, handouts, etc.
 d. Classroom lecture/sessions shall include the use of computer presentations, still pictures and video/audio-taped material as appropriate
 e. Classroom session shall include discussion of control drawing schematic and sequence of operation
 f. Classroom hands-on demonstration of equipment including testing and service equipment.
4. The trainings will be tailored to the needs and skill level of the trainees. This includes providing an overview of the system down to the most technical information.
5. During any demonstration, should the system fail to perform in accordance with the
requirements of the O&M manual or sequence of operation, the system will be repaired or adjusted as necessary and the demonstration repeated.

3.03 TRAINING REQUIREMENTS

A. Training shall include but is not limited to the following:

1. Hands-on training
 a. MEP: shall include start-up, operation in all modes possible, including manual, shut-down and any emergency procedures and preventative maintenance for all pieces of equipment and controls including BAS. Include the location of valves, mechanical and electrical infrastructures and other operational components. Provide comprehensive training of the pertinent O&M requirements.
 b. Enclosure: shall include proper function and operation of components within the system (Fenestration, Roofing, etc.), installation of typical replacement parts, typical cleaning procedures.
 c. Electronic Security: shall include start-up/shut-down and operation in all modes including loss of power, various failure modes, and emergency procedures defined in the OPR or CFR, and preventative maintenance for all pieces of equipment and controls. Contractor will show O&M staff the physical location of monitoring devices, card readers, data collection systems, and other operational components as part of a comprehensive training of the O&M staff.

2. Classroom training
 a. A review of the written O&M instructions emphasizing safe and proper operation requirement, service, maintenance, preventative maintenance, special tools needed and spare parts inventory suggestions (sources).
 b. General purpose of systems or equipment (design intent).
 c. Review of control drawings and schematic (have copies for attendees).
 d. Start-up, loading, normal operation, unloading, shutdown, occupied operation, seasonal changeover, emergency procedures, etc. as applicable.
 e. Integral controls (packaged): programming, troubleshooting, alarms, manual operation.
 g. Interactions with other systems, operation during power outage and fire.
 h. Discussion of relevant health/safety issues and concerns and safety features.
 i. Energy conserving operation and strategies.
 j. Discussion of warranties and guarantees.
 k. Common troubleshooting problems and solutions, control system warnings and error messages, including using the control system for diagnostics, as applicable.
 l. Discussion of special requirements of tenants for equipment functions as applicable.
 m. Explanatory information included in the O&M manuals and the location of all plans and manuals in the facility.
 n. Discussion of any peculiarities of equipment installation or operation.

3. Question and answer period.
3.04 STAGED PROGRESSIVE TRAINING SESSIONS

A. Walk-through & Familiarization: During construction, the contractors will provide a partial walk-through with the owner’s personnel to familiarize them with the locations of equipment, valves, junction boxes, piping, ductwork, etc. before they are covered with interior finishes.

1. Format / Completed training agendas must be submitted to the CxP 30 days prior to the scheduled training date.
B. Initial Systems Training: Initial training will be held on-site and will occur prior to final completion. This initial training will discuss and explain an overview of all equipment and systems specified in the project contract documents. Detailed Initial System Training shall be provided by electrical, mechanical, lighting, fire alarm, building automation controls, security (CCTV and Card Access) and other relevant contractors involved with the project. Training sessions will include classroom or on-site lectures as well as hands-on training and demonstration of equipment and systems. Upon completion, each trainee, using appropriate documentation, should be able to perform operations and describe hardware and functionality of the system. The training will include instruction on:

1. Specific hardware configuration of installed systems in the building and specific instruction of operating the installed system, including HVAC systems, lighting controls and any interface with security and communication systems.

2. Security levels, alarms, system start-up, shut-down, power outage and restart routines, changing setpoints and alarms and other typically changed parameters, overrides, freeze protection, manual operation of equipment, optional control strategies that can be considered, energy savings strategies and setpoints that is change will adversely affect energy consumption, energy accounting, procedures for obtaining vendor assistance, etc.

3. All trending and monitoring features (values, change of state, totalization, etc.) including setting up, executing, downloading, viewing both tabular and graphically and printing trends shall be taught to students. Trainees will actually set-up trends in the presence of the trainer. The following will be discussed:
 a. Every screen
 b. Use of keypad or plug-in laptop computer at the zone level
 c. Use of remote access to the system via phone lines or networks.
 d. Graphics generation

4. The initial training shall consist of:
 a. Training on interior lighting controls and all other electrical and life safety equipment system (see OPR/CFR project contract documents for minimum training period).
 b. Training on HVAC control system/BAS and other HVAC/mechanical equipment and systems (see OPR/CFR project contract documents for minimum training period).
 c. Training on CCTV and card access systems (see OPR/CFR project contract documents for minimum training period).

5. Format / Completed training agendas must be submitted to the CxP 30 days prior to the scheduled training date.

C. Final Training: Final training will be conducted on-site six months after occupancy and will discuss the overall/general functions of all mechanical, electrical, security, and fire protection systems. The session(s) will also be structured to address specific topics that trainees need to discuss and to answer questions concerning operation of the system.

1. Format / Completed training agendas must be submitted to the CxP 30 days prior to the scheduled training date.

END OF SECTION
Sustainable Design Requirements

1.01 GENERAL: SUSTAINABILITY AND STEWARDSHIP IN DESIGN AND OPERATION

A. Georgia Institute of Technology (GT) commitment to a comprehensive 'green' building program and our emergence as a national leader in this growing trend reflects our intention to develop an environmentally sustainable campus. Major institutions simply must take the lead in responsible planning to address the challenges of declining air quality, depletion of natural resources and traffic congestion.

B. GT utilizes The State of Georgia Energy Efficiency and Sustainable Construction Standards for State Buildings (also known as Peach Green Building Rating System) as a benchmark to gauge their efforts in energy and water efficiency, and use of Georgia-based building materials. GT utilizes various guiding principle in the development of all the Institution’s construction and renovation projects defined within the Yellow Book. GT evaluates the environmental sustainability of building design, construction and operation, and focuses on building site selection and erosion control, water efficiency, energy and atmosphere, materials and resources, and indoor environmental quality. Sustainability and stewardship practiced by GT makes good business sense. By building 'green' we are reducing long-term operating costs for the university and our impact and footprint on the environment around us. GT’s green building program is one of the Institution's many environmental initiatives, including an extensive alternative transportation program, the creation and continued development of a core walking campus, and a nationally recognized recycling program.

C. All new building projects and major renovations are required to be designed to provide easily-accessible, dedicated areas for the collection and storage of recycled materials generated from the building and their removal to the central recycling center. At a minimum, these materials must include paper, corrugated cardboard, glass, plastics, and metals.

2.01 SUSTAINABILITY AND STEWARDSHIP IMPLEMENTATION PROCESS

A. GT wishes to follow the Peach Green Building Rating System as a benchmarking tool for all new buildings and major renovations planned at GT. GT feels that in lieu of expending funds for extensive documentation that those funds be used to implement Sustainable practices and good stewardship through the requirements contained within the Yellow Book.

B. The Project Architect is required to implement the project under the Peach Green Building Rating System and Yellow Book requirements. Projects are required to meet the mandatory requirements of Peach and achieve a minimum of 31 points or two peaches. This requirement may be waived on a case by case basis by Design and Construction for small capital projects such as minor renovation building.

3.01 DESIGN REQUIREMENTS

A. Provide an easily accessible dedicated area for the collection and storage for recycling for the entire building.

B. Provide products with recycled content such that the sum of post-consumer recycled content plus one-half of the post-industrial recycled content constitutes at least 10 percent of the total value of all products installed, except mechanical and electrical components.

C. Some materials that can contain levels of recycled content that can help achieve the recycled content goal include structural steel, rebar, carpet /carpet tile, gypsum board, ceiling tiles, concrete/CMU, and aluminum products.
D. Provide materials amounting to a minimum of 70 percent of the total value of all materials (excluding plumbing, HVAC, electrical, elevators, and other equipment) that have been extracted, harvested, or recovered, as well as manufactured, within The State of Georgia. GT encourages projects to purchase the remaining materials with a radius of 500 miles from the project site. Some products that can help achieve Peach Green Building Rating System Regional Materials credits include wood construction materials, tile, and carpet/carpet tile, landscaping, concrete/CMU/precast, and glass/windows/storefront.

E. Demonstrate through computer simulations that 75% or more of all regularly occupied spaces achieve daylight illuminance levels of a minimum 25 and a maximum of 500 footcandles in clear sky conditions on 9/21 at 9:00 am and 3:00 pm.

F. In an effort to obtain the actual performance characteristics and abide by the sustainability goals of GT designers shall implement enhanced sub-metering on all new and renovated buildings. Enhanced sub-metering design shall include but not limited to the trending and logging of all principle electrical (lighting, plug and mechanical) and mechanical (utilities: steam and chilled water) building loads. Enhanced sub-metering design shall adhere to sections 230519: J through L and 262713: 3.01 through 6.01. Scope and limitations of the enhanced sub-metering design will be at GT’s discretion.

G. In accordance with section E, a detailed energy simulation, abiding by section 230002: 8.01, shall be developed to show the as-designed construction of the new or renovated building projects. The proposed design shall indicate the predicted Energy Use Intensity (EUI) the design will be delivering when the building is occupied. Designers shall provide Life Cycle Cost analysis for energy and water efficiency as required in Yellow Book Section 010001 “General Requirements.” Designers are responsible for accurate estimates of expected operation, control and use as specified by Georgia Tech Facilities departments. Further comparisons of said model will be used to evaluate actual performance and performance over a monitored period as described in the measurement and verification report.

4.01 Sustainable Design and Construction Submittal Form

Identification Project Name __________________________
Project Number ____________________________
Architect ____________________________

Product Name (name, model #, etc) _____________________________
Manufacturer _______________________________
Supplier/Sub __

Applicable Specification Section Number(s) _______________________

Cost of product ________________________________

This form applies the amount of Recycled Content and Regional Materials in the project.

Percentage of Post-Consumer Recycled Content ______

Percentage of Post-Industrial Recycled Content ______
Regional Materials

The following percentages of this product were processed in the locations indicated. (Indicate N/A in the first column if the process is not applicable.)

<table>
<thead>
<tr>
<th>Product/Material</th>
<th>Manufacturing Location</th>
<th>Harvesting Location</th>
<th>Percentage Manufactured or Harvested</th>
<th>Retail Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculations

*Equation 1: Percentage of Georgia Materials = Total Cost of Georgia Materials ($)/Total Cost of Materials($) * 100*

END OF SECTION
018800 - Other Requirements

1.01 GENERAL

A. Trucks and service vehicles associated with any building project on the Georgia Tech campus must turn off their engines while making deliveries. The General Contractor must place “No Idle Zone” signs in the areas where service and delivery vehicles frequently operate while on campus for the duration of the Project. The new policy excludes safety and emergency vehicles, electric vehicles, and trailer engines used solely to control freight temperatures. The “No Idle” policy is created to reduce wasted fuel; improve air quality on campus and in the region; and to protect campus workers, students, and visitors from potentially harmful emissions.

B. Dead Week and Finals Week – No construction activities will be permitted during these (2) week long periods without prior Approval from Facilities Design and Construction.

END OF SECTION
01 91 00 Commissioning General Requirements

1.01 DESCRIPTION

A. Commissioning is a mandatory requirement of Department of Community Affairs (DCA), Georgia State Finance and Investment Commission (GSFIC), and Georgia Institute of Technology (GT) for all new construction and/or alternate delivery methods such as CM At Risk, Design/Build or other developed project delivery methods. The ownership of the project or finance method, including leasing/renting does not offset, sidestep or allow for deletion of this Commissioning requirement. The basic purpose of commissioning is “to provide documented confirmation that building systems and assemblies function in compliance with criteria set forth in the Owner’s Project Requirements (OPR) for new projects and Current Facility Requirements (CFR) for modifications to existing buildings”. All projects equal of greater to ten thousand GSF or having budgets of one million dollars or more are considered major renovations and require commissioning in accordance with the Yellow Book. The need to commission smaller renovation projects shall be evaluated by GT based on the complexity of the project and the systems within the project scope.

B. The Commissioning Team consists of the Owner (GT, and DCA or GSFIC if involved with the project), Commissioning Provider (CxP), and Design and Construction team members. The Owner is responsible to see that the OPR or CFR are developed prior to the start of the design of the project.

C. The Design Team is responsible for integrating GT goals and objectives documented in the OPR or CFR and the commissioning requirements provided by the CxP into the Project Documents, and providing clear direction for the Construction Team to follow. The design team shall attend the OPR/CFR development workshop to collect information preferable prior to the start of architectural programing. The design team shall provide a Basis of Design documents at each design submission to GT, other identified stakeholders and The CxP. Each design discipline shall provide:

1. Narratives describing the systems, cut sheets of products, components, equipment used as the basis of design
2. Copies of all studies conducted as part of developing a design solution relevant to the stage of design submission.
3. All calculations performed in development of the design solution, selection of products, components, and equipment.
4. All assumptions used in selection of products, components, and equipment.

D. The Commissioning Provider (CxP) shall, at a minimum, commission the following systems; mechanical systems (heating, ventilating, air conditioning, and refrigeration equipment and controls, heat recovery and renewable energy systems, laboratory systems, test and balance verification), electrical systems (lighting and daylighting controls and renewable energy systems), and plumbing systems (plumbing fixtures, landscaping irrigation controls, potable water pump stations, sump pumps, domestic hot water systems, rainwater collection systems, and onsite waste water treatment systems). Other systems that may be considered in the commissioning process include the building enclosure, dangerous gas monitoring; normal, standby and emergency power systems, voice data, fire alarm; metering and submetering of utilities serving the building, mechanical conveyances. The commissioning authority shall evaluate the installation and performance of all commissioned systems to ensure that the building and systems perform in accordance with the Owner’s Project Requirements (OPR) for new construction and major renovations or the Current Facility Requirements (CFR) for
existing buildings not being substantially renovated.

1. The Commissioning Process is a quality-focused process for enhancing the delivery of a project. The process focuses upon evaluating verifying and documenting that all of the commissioned systems and assemblies are planned, designed, installed, tested, operated, and maintained to meet the Owner's Project Requirements. GT expects CxP to identify opportunities to improve building performance throughout the commissioning process and provide the data needed for GT to make informed decisions.

2. The Commissioning Process assumes that owners, programmers, designers, contractors, and operations and maintenance entities are fully accountable for the quality of their work. The Commissioning Team uses methods and tools to evaluate that the project is achieving the Owner’s Project Requirements throughout the delivery of the project.

E. The Commissioning Process shall begin in the pre-design phase and, if directed by GT, conduct the OPR/CRF workshop and document the OPR or CFR results setting the foundation for integrated design and project delivery. The commissioning shall continue through construction, acceptance and the warranty period.

F. Circumstances may cause owners to adopt the Commissioning Process during the Design or Construction Phase of a project, such later implementation must capture the information that would have been developed had the Commissioning Process begun at project inception.

G. The commissioning process shall:

1. Evaluate that building systems and assemblies included in the commissioning scope meet the Owner’s objectives and criteria documented in the OPR or CFR.
2. Assemble documentation from the project team that provides the Owner’s operational staff with the documentation required to operate, maintain and facilitate future modifications in accordance with the OPR.
3. Conduct, direct, witness, and document testing for the purpose of evaluating building systems and assemblies perform in accordance with the OPR or CFR.
4. Develop training and demonstration requirements based on OPR or CFR, schedule and witness required training was provided and document who was trained.

H. The commissioning process does not take away from or reduce the responsibility of the system designers or installing contractors to provide a finished and fully functioning product. Based on the Commissioning Scope, CxP shall develop commission specifications including general requirements defined in Division 01 and specific commissioning requirements for each Division contained in the commissioning scope in accordance with CSI 2004 format.
2.01 COORDINATION

A. Commissioning Team.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Subject</th>
<th>Abbreviation</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/E</td>
<td>Architect/Engineer (Design Professional Team) One or a multiple professional firms that provide the design disciplines required for this project</td>
<td>CxP</td>
<td>Commissioning Provider</td>
</tr>
<tr>
<td>GC</td>
<td>General Contractor</td>
<td>ELECC</td>
<td>Electrical Contractor</td>
</tr>
<tr>
<td>MECHC</td>
<td>Mechanical Contractor</td>
<td>PLMBC</td>
<td>Plumbing Contractor</td>
</tr>
<tr>
<td>TABC</td>
<td>Testing and Balancing Contractor</td>
<td>C/IC</td>
<td>Controls and Instrumentation Contractor</td>
</tr>
<tr>
<td>BIC</td>
<td>Building Insulation Contractor</td>
<td>CFMFC</td>
<td>Cold Formed Metal Framing Contractor</td>
</tr>
<tr>
<td>CONCC</td>
<td>Cast in Place Concrete Contractor</td>
<td>CWC</td>
<td>Curtain Wall Contractor</td>
</tr>
<tr>
<td>DPC</td>
<td>Dampproofing Contractor</td>
<td>D/WC</td>
<td>Door and Window Contractor</td>
</tr>
<tr>
<td>EIFSC</td>
<td>Exterior Insulation Finish System Contractor</td>
<td>EMFC</td>
<td>Exterior Metal Finishes Contractor</td>
</tr>
<tr>
<td>FSMC</td>
<td>Flashing and Sheet Metal Contractor</td>
<td>GLC</td>
<td>Glazing Contractor</td>
</tr>
<tr>
<td>GYPc</td>
<td>Gypsum Wall Systems Contractor</td>
<td>MSC</td>
<td>Masonry Contractor</td>
</tr>
<tr>
<td>MDC</td>
<td>Metal Decking Contractor</td>
<td>PCONC</td>
<td>Precast Concrete Contractor</td>
</tr>
<tr>
<td>RFC</td>
<td>Roofing Contractor</td>
<td>SC</td>
<td>Sealant Contractor</td>
</tr>
<tr>
<td>STNC</td>
<td>Stone (and cast stone) Contractor</td>
<td>STC</td>
<td>Stucco System Contractor</td>
</tr>
<tr>
<td>WPC</td>
<td>Waterproofing Contractor</td>
<td>ETC</td>
<td>Electronic Technology Contractors (Security, IT/Voice, etc.)</td>
</tr>
<tr>
<td>Const-CK</td>
<td>Construction Check List</td>
<td>CxP-PM</td>
<td>Commissioning Provider Project Manager</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilation and Air Conditioning</td>
<td>O&M</td>
<td>Operations & Maintenance</td>
</tr>
<tr>
<td>O-REP</td>
<td>Owners Representative</td>
<td>TP</td>
<td>Test Procedure</td>
</tr>
<tr>
<td>GC-SUPER</td>
<td>General Contractor’s Field Superintendent</td>
<td>GC-PM</td>
<td>General Contractors Project Manager</td>
</tr>
<tr>
<td>OPR</td>
<td>Owner’s Project Requirements (and Performance Requirements)</td>
<td>CFR</td>
<td>Current Facility Requirements (Performance Requirements)</td>
</tr>
</tbody>
</table>

B. Management. The CxP is hired by the Owner directly as part of the project team and is an integral part of the design/delivery team. In certain contract delivery methods the ownership of the commissioning contact will be transferred to the project delivery team to ensure continuity. The CxP directs and coordinates the commissioning activities and the reports to the GSIFIC and GT project manager. All members work together to fulfill their contracted responsibilities and meet the objectives of the OPR or CFR and Contract Documents. The CxP’s responsibilities are the same regardless of who hired the CxP. All of the CxP identified issues log shall be integrated in to the project's official record maintained by the project team. These reports are instruments for the owner/architect/project manager to demand contractor corrections.

3.01 COMMISSIONING PROCESS

A. The Commissioning Process is a quality-focused process for enhancing the delivery of a project. The process focuses upon evaluating verifying and documenting that all of the commissioned systems and assemblies are planned, designed, installed, tested, operated, and
B. At the initiation of the Commissioning Process, the Owner is responsible for determining the scope of the Cx Plan (that is, the systems and assemblies to be included), selecting the Cx Process team leader, selecting the Cx process team for the project, incorporating Cx activities into project team roles and responsibilities, and the establishment of Cx budget. The selected CxP directs the commissioning process and shall be an objective advocate of the Owner.

C. The Owner shall provide direction, reviews and acceptance as required throughout the project and the Cx process.

D. The selected Commissioning Team (CxT) shall provide the following if included in the commissioning scope:

1. Pre-design Phase:
 a. CxP shall assist the Owner with the development of the Owner’s Project Requirements or Current Facility requirements. The Owner shall ensure the development of the project’s OPR or CFR. The OPR or CFR shall include at a minimum:
 i. Facility objectives, size, location, user requirements, and owner directives.
 ii. Environmental, sustainability, and efficiency goals and benchmarks (EUI minimum target, percentage better than ASHRAE 90.1, etc.).
 iii. Indoor environment requirements, including temperature, humidity, and ventilation.
 iv. Space usage, occupancy, and operation schedules.
 v. Commissioning process scope and requirements, listing of equipment, systems and assemblies requiring commissioning.
 vi. Equipment, systems and assemblies requirements, expectations, and warranty provisions.
 vii. Maintainability, access, and operational performance requirements.
 viii. Installation evaluation and testing requirements.
 ix. Project documentation and Systems Manual requirements and formats.
 x. Training requirements for owner’s operation and maintenance personnel and occupants.
 xi. Applicable codes and standards in addition to local building codes.
 xii. Project schedules.
 xiii. Special project requirements.
 xiv. The content, organization, and milestones of BOD submittals for the design and construction process.
 xv. The number, format and scheduling of design and submittal reviews.
 xvi. Sampling procedures, if permitted, for all reviews, evaluations and testing.
 xvii. Commissioning Progress Report formats and distributed intervals.
 b. During the Pre-Design Phase the Design Team shall participate in the Owner’s Project (OPR) Workshop (Typically a 4 hour event) and conduct a review of the OPR developed by the CxP and provide comments to Owner and CxP. Key participants shall include GT stakeholders including end user groups, CPSM and Facilities Management teams. Design Team participation prior to development of architectural program can benefit the design team and reduce some of the programming effort.
 c. Utilizing the OPR or CFR the CxP shall develop a design phase Cx Plan that includes, commissioning scope, overview of the commissioning process during design, roles and responsibilities of the design phase project team, communication
2. Design Phase:
 a. The project architect/engineer shall include the commissioning authority as part of the project team and shall consider all commissioning review comments, technical memos, specifications, submittal review reports, field reports, issues and benefit log, and commissioning progress reports when developing directions to the construction team. All commissioning documents sent to the Owner’s team with copies to the design team, and construction team only during the construction period.
 b. Design Team participates in the commissioning process in accordance with the requirements contained in the Yellow Book and the Owner approved design and construction phases commissioning plan, which shall contain at a minimum the following:
 i. Development of the Basis of Design: As the design progresses the design team shall issue Basis of Design (BOD) documentation at each design submission. The BOD is a written document that shall provide detailed information on the design team approach to meeting the OPR. The BOD provides the Owner with a better understanding of design issues, and information GT requires to make informed decisions. The BOD shall be developed by the design team in accordance with the OPR. The BOD shall be updated and expanded during design and construction as the project evolves. The function of the BOD shall be to:
 a. Describe in detail the design team’s technical approach to each of the Owner’s requirements including providing copies of cut sheets of materials, components, assemblies and equipment the design is based on. Associated studies and analysis used by the design team to make design decisions including but not limited to material compatibility, daylighting models, energy and water efficiency simulation models or calculations, assumed population density and activity levels by space type, interior lighting levels, exterior lighting photometric, etc.
 b. If during the Design Phase the Owner requests the CxP to perform a commissioning design review the design team shall respond to comments in writing and participate in a project team meeting to review select comments requiring discussion. Project team meeting to review commissioning comments shall follow receipt of designer responses to Commissioning Team (CxT) comments. Each discipline will participate for their section of commissioning comments, except for the lead architect, who as the design team lead, will be present during all design related discussions. Each design discipline included in the commissioning scope shall allow one hour per design submission for the project team commissioning design review meeting to focus specifically on commissioning comments related to their discipline. GSFIC and GT designated representatives shall review the Cx Process design review comments, participate in an issue resolution process, and provide direction to the team when needed to meet the OPR.
 iii. The CxP shall, through GT and GSFIC project manager schedule the collaborative design discussion of commissioning comments, provide a schedule for each discipline’s participation in consensus with Architect Design Manager.
 iv. At the Design Development design submission the design team shall issue a preliminary project specifications that represent systems and assemblies...
contained in the basis of design. A minimum of one weeks prior to the construction document submission by the design team the CxP shall submit draft commissioning specifications to the design architect for inclusion in the mid Construction Document (CD) submittal.

a. The CxP shall submit specifications in compliance with the OPR and Yellow Book requirements. At a minimum the CxP shall submit the following specifications and commissioning documents to the design team and owner for review, comment, and approval:
 i. Section 01 33 01 Commissioning Submittal Procedures
 ii. Section 01 78 01 Commissioning Closeout Procedures
 iii. Section 01 79 00 Demonstration and Training
 iv. Section 01 91 00 Commissioning Requirements
 v. Section 22 80 00 Commissioning of Plumbing Systems
 vi. Section 23 80 00 Commissioning of HVAC Systems
 vii. Section 26 80 00 Commissioning of Electrical systems
 viii. Draft Construction Phase Commissioning Plan, Sample Construction Checklists and Test Procedures (See Cx Plan content requirements below).

b. The CxP shall submit final commissioning specifications, updated draft construction phase commissioning plan, project specific draft commissioning construction checklists and test procedures a minimum of one week prior to 100% Construction Document submission by the design team.

3. Construction Phase:

a. Design and construction teams participates in the commissioning process in accordance with the requirements contained in the Yellow Book and the Owner approved construction phase commissioning plan (Cx Plan).

b. The Cx Plan is developed by the CxT and approved by the Owner. The Cx Plan shall contain at a minimum the following:
 i. Overview of the Cx Process developed specifically for the project.
 ii. Roles and responsibilities for the Cx Team throughout the project.
 iii. Documentation of general communication channels including the distribution of the Cx Plan and subsequent commissioning reports during the construction process.
 iv. Detailed description of Cx Process activities and a schedule of activities.
 v. General description of Cx Process activities that will occur during Construction, and Occupancy and Operations.
 vi. Summary of format that will be used by project team in providing Cx Process documentation, including Systems Manual and Training Plans.
 vii. Draft commissioning evaluation checklists and testing forms, issues and resolution log form with instructions on how it is used, and Cx Progress
Reports that will be used during the project to communicate and track critical Cx Process information.

viii. List of project commissioned systems and assemblies and summary of evaluation procedures contained in the specifications including Draft Commissioning Construction Checklists and Draft Commissioning Test Procedures.

c. The CxP shall conduct a commissioning kick-off and scoping meeting with the Commissioning team (including relevant design and construction team members) at the beginning of the project to explain Cx procedures, coordinate commissioning activities including review of construction submittal procedures, project team deliverables, and schedule of commissioning activities. Based on project team input the Cx Plan will be updated, submitted to owner for approval, and distributed to the project team.

d. Commissioning activity coordination and scheduling shall occur throughout the project including reviewing issues at OAC and GC progress meetings, preconstruction meetings contained, and issues resolution meetings.

e. Submittal Review is performed concurrent with the design team. CxT comments are provided to the design team for their consideration prior to responding to contractors. After designer approval of the construction submittals for commissioned systems and assemblies the CxT will finalize the Commissioning Construction Checklists and Test procedures and issue the documents to the Construction team.

 i. Project-specific Construction Checklists and Cx testing procedures shall be established for review by Owner and appropriate team members.

 ii. The test procedures shall list the entities responsible for executing each of the tests.

 iii. Whenever a test data result is required for a specific system or assembly, there shall be an item in the associated Construction Checklist for the test data to be submitted to the CxP.

f. Evaluation of the systems and assemblies by the Cx team shall include the following:

 i. Vital information on the system, assembly, equipment or materials being supplied. Information shall detail what system, assembly, equipment/material was specified and submitted.

 ii. What was actually delivered on the site shall be documented and verified. The condition of the equipment at the time it is delivered at the site and prior to its installation.

 iii. Proper installation of the systems and assemblies. Evaluation shall focus on the physical installation of the systems and assemblies, on their ability to meet the contract documents requirements, and on accessibility for Cx, testing, and maintenance operations.

 iv. Successful Cx testing results of systems and assemblies.

g. Executing Test Procedures

 i. Once Construction Checklists and test procedures are established, the responsible entities shall execute relevant test protocols and repeat testing as necessary until equipment, systems, or assemblies being tested pass all tests.
ii. The CxP directs, witnesses, and documents the tests conducted by the Cx Team as required by the Cx Plan.

iii. Completed test reports shall be submitted to the project team for review.

iv. Any commissioned system or assembly that fails to meet requirements and that cannot be resolved in a timely manner shall be given an issue number and recorded in the Issue and Resolution Log to facilitate follow up.

v. All checklists and test procedure results shall be compiled into the Final Commissioning Report.

4. Post Occupancy Operation
 a. Post occupancy operation commissioning, including delayed and seasonal testing and warranty issues, shall be provided to deliver buildings and construction projects that meet the Owner’s needs, prior to the time of warranty completion. The Post Occupancy Operations Activities of the Commissioning Process begin at substantial completion.
 i. The Cx Process activities shall continue through the end of the contractual warranty period.
 ii. The seasonal, delayed, and incomplete testing of facility systems and assemblies shall be completed. The CxP shall determine when the Cx testing shall be performed based on weather conditions, load conditions, or occupant interactions that are required to complete the activities for all systems and assemblies being commissioned.
 iii. The general contractor shall coordinate contractor call-backs to resolve issues identified during the Cx Process and provide written documentation to the CxP that the issues have been resolved and/or the Owner has accepted the final conditions.
 iv. Additional training shall be performed during the Post Occupancy and Operations activities in accordance with the Training and Cx Plans.
 v. During the Post Occupancy Operations activities, the operation, maintenance, and modification of the facility systems and assemblies, and their associated documentation, shall be evaluated to comply with the updated OPR and BOD.
 vi. By the conclusion of the Post Occupancy Operation commissioning activities, the Systems Manual, testing documentation, issue and Resolution Logs, training report, and a final Cx Report shall be updated and submitted for acceptance.

E. Construction Phase Commissioning Plan. The Construction Phase Commissioning Plan, provided as part of the bid documents, is binding on the Contractor. The commissioning plan provides guidance in the execution of the commissioning process. Just after the initial commissioning scoping meeting the CxP will update the plan which is then considered the final plan, though it will continue to evolve and expand as the project progresses. The Design criteria will take precedence over the Commissioning Plan.
4.01 RELATED WORK

A. Specific commissioning requirements are given in the following sections of these design criteria. All of the following sections apply to the Work of this section.

<table>
<thead>
<tr>
<th>Division</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 33 01</td>
<td>Commissioning Submittal Procedures</td>
<td>Alerts all parties that additional detail in submittals is required for commissioning and directs to Division 01</td>
</tr>
<tr>
<td>01 78 01</td>
<td>Commissioning Close-out Procedures</td>
<td>Alerts all parties that additional detail in submittals is required to meet commissioning documentation requirements and directs to Division 01</td>
</tr>
<tr>
<td>01 79 00</td>
<td>Demonstration and Training</td>
<td>Alerts all parties of training requirements for each building system and assembly to be provided by the construction team and directs to Division 01.</td>
</tr>
<tr>
<td>01 91 00</td>
<td>Commissioning Requirements</td>
<td>Alerts all parties of commissioning requirements and associated roles and responsibilities.</td>
</tr>
<tr>
<td>07 08 00</td>
<td>Commissioning of Thermal and Moisture Protection</td>
<td>Alerts building enclosure contractors of Cx requirements in Division 07</td>
</tr>
<tr>
<td>08 08 00</td>
<td>Commissioning of Openings and Fenestration Systems</td>
<td>Alerts building enclosure contractors of Cx requirements in Division 08</td>
</tr>
<tr>
<td>13 08 00</td>
<td>Commissioning of Special Construction</td>
<td>Alerts special construction contractors of Cx requirements in Division 13</td>
</tr>
<tr>
<td>22 08 00</td>
<td>Commissioning of Plumbing Systems</td>
<td>Alerts Plumbing Contractor and their Subcontractors of Cx requirements in Division 22</td>
</tr>
<tr>
<td>23 08 00</td>
<td>Commissioning of HVAC Systems</td>
<td>Alerts HVAC Contractor and their Subcontractors of Cx requirements in Division 23</td>
</tr>
<tr>
<td>26 08 00</td>
<td>Commissioning of Electrical Systems</td>
<td>Alerts Electrical Contractor and their Subcontractors of Cx requirements in Division 26</td>
</tr>
<tr>
<td>33 08 00</td>
<td>Commissioning of Utilities</td>
<td>Alerts Utility Infrastructure Contractors and their Subcontractors of Cx requirements in Division 33</td>
</tr>
</tbody>
</table>
5.01 RESPONSIBILITIES

A. The responsibilities of select parties in the commissioning process are summarized in the following articles of this Section 5.01.06 Responsibilities.

B. The Contractor is not responsible for providing the services of the Engineer, Designer and CxP. Their responsibilities are listed here to clarify the commissioning process. Responsibilities of Contractor have been broken up by discipline to increase clarity only and are not intended to specify the manner which Contractor shall follow to meet these requirements.

C. The responsibilities of the Designer, Engineer and CxP shown here are not intended to alter their contractual responsibilities to the Owner. These responsibilities have been established by separate contracts of the said parties with the Owner. Their responsibilities are listed here only to clarify the commissioning process.

D. All Participating Parties
 1. Follow the Commissioning Plan.
 2. Attend commissioning scoping meeting and additional meetings, as necessary.

E. Architect (of A/E)
 1. Design Phase
 a. Follow OPR or CFR, and GT approved commissioning plans for design and construction. See section 3.01 for general expected participation in the commissioning process.

 2. Construction and Acceptance Phase
 a. Does not manage the CxP’s contract; said contract managed directly by owner.
 b. Attend and participate in the Commissioning Kickoff and Scoping meetings and selected commissioning team meetings.
 c. Perform normal submittal review, construction observation, as-built drawing preparation, O&M manual, etc., as contracted.
 d. Complete the Basis of Design (BOD) form furnished by the CxP and provide the design narrative documentation requested as a part of the BOD.
 e. Coordinate resolution of issues identified during the (3) three Design Reviews (DD, SD and CD phases of the drawings and specifications) in according with the contract documents.
 f. Coordinate resolution of system deficiencies identified during commissioning, according to the contract documents.
 g. Prepare and submit record drawings and documentation for inclusion in the O&M manuals. Review and accept the O&M manuals.

 2-3. Warranty Phase
 a. Coordinate resolution of design non-conformance and design deficiencies identified during warranty-period commissioning.

F. Mechanical and Electrical Designers/Engineers
 1. Construction and Acceptance Phase
a. Perform normal submittal review, construction observation, as-built drawing preparation, etc., as contracted with Owner. Conduct one site observation just prior to system start-up.
b. Provide design narrative and sequence of operation documentation requested by the CxP. The designers shall assist (along with the contractors) in clarifying the operation and control of commissioned equipment in areas where the Specifications, control drawings or equipment documentation is not sufficient for writing detailed testing procedures.
c. Attend commissioning kickoff and scoping meetings and other selected commissioning team meetings as contracted with the Owner.
d. Participate in the resolution of system deficiencies identified during commissioning, according to the contract documents.
e. Coordinate resolution of issues identified during the (3) three Design Reviews (DD, SD and CD phases of the drawings and specifications) in according with the contract documents.
f. Prepare and submit record drawings and documentation for inclusion in the O&M manuals. Review and accept the O&M manuals.
g. Provide a presentation in accordance with Section 017900 at the final training session for the Owner’s personnel. The final training will discuss the overall/general functions of mechanical and electrical systems. The session will also be structured to address specific topics that trainees need to discuss and to answer questions concerning operation of system.
h. Review the Const-CK (equipment or system specific checklist’s prepared by CxP) for major pieces of equipment for sufficiency prior to their use.
i. Review the test procedure forms for major pieces of equipment for sufficiency prior to their use.
j. Final single line drawings for the water and air side of the entire HVAC system. Drawings should contain location of all dampers, coils, fans, sensors, etc. Drawings should be provided to CxP for review at same time as O&M Manuals (thirty (30) days prior to initial training).

2. Warranty Phase
a. Participate in the resolution of non-compliance, non-conformance and design deficiencies identified during construction on warranty-period through the commissioning process.
G. Commissioning Provider (CxP): The CxP is not responsible for design concept, design criteria, compliance with codes, design or general construction scheduling, cost estimating, or construction management. The CxP may assist with problem-solving, non-conformance or deficiencies, but ultimately that responsibility resides with the GC and the A/E. The primary role of the CxP is to develop and coordinate the execution of a commissioning testing plan, observe and document performance that systems are functioning in accordance with the documented Owner’s Project Requirements and Performance Criteria and in accordance with the Contract Documents. The contractors will provide all tools or the use of tools to start, access equipment, check-out and performance test equipment and systems, except for specified testing with portable data-loggers, which shall be supplied and installed by the CxP.

1. Design Phase
 a. Follow the commissioning scope defined in the OPR and CFR.

2. Construction and Acceptance Phase
 a. Coordinates and directs the commissioning activities in a logical, sequential and efficient manner using consistent protocols and forms, centralized documentation, clear and regular communications and consultations with the necessary parties, frequently updated timelines and schedules and technical expertise.
 b. Coordinate the commissioning work and, with the GC and Owner and/or O-REP, ensure that commissioning activities are being scheduled into the master schedule.
 c. Revise, as necessary, Commissioning Plan – Construction Phase.
 d. Plan and conduct a Commissioning Kickoff and Scoping meetings.
 e. Request and review additional information required to perform commissioning tasks, including O&M materials, contractor start-up and checkout procedures. Before start-up review current control sequences and interlocks and work with contractors and design engineers until sufficient clarity has been obtained, in writing, to be able to write detailed testing procedures.
 f. Develop the format for, and coordinate the completion of the emergency power and fire alarm response matrix as defined in this section.
 g. Review normal contractor submittals applicable to equipment, systems and assemblies being commissioned concurrent with the A/E reviews for compliance with commissioning, O & M needs, and coordination issues.
 h. Write and distribute construction checklists (Const-CK) for commissioned equipment and components of the building enclosure.
 i. Reviews the enhanced start-up and initial systems checkout plan developed for selected equipment by the contractors.
 j. Perform site visits, as necessary, to observe equipment, component and systems and assembly installations. Attend selected planning and job-site meetings to obtain information on construction progress. Review construction meeting minutes for revisions/substitutions relating to the commissioning process. Assist in resolving discrepancies.
 k. Document construction checklist completion by reviewing completed construction checklists and by selected site observation.
 l. Witness the HVAC piping test and flushing procedure, sufficient to be confident that proper procedures were followed. Document this testing and include the
documentation in O&M manuals. Notify Owner and/or the O-REP of any deficiencies in results or procedures.

m. Witness ductwork testing and cleaning procedures, sufficient to be confident that proper procedures were followed. Document this testing and include the documentation in O&M manuals. Notify Owner and/or the O-REP of any deficiencies in results or procedures.

n. Document systems start-up by reviewing start-up reports and by selected site observation.

o. Write commissioning test procedures for equipment and systems. This will include manual testing, energy management control system trending and may include stand-alone data-logger monitoring. The CxP will write detailed test procedures for commissioned equipment, systems and assemblies, and submit to O-REP, contractors’ and A/E for review and approval unless noted otherwise in the specifications.

p. Review TAB execution plan.

q. Witness sufficient commissioning testing of the control system to verify it may be used for TAB, before TAB is executed.

r. Verify air and water systems balancing by spot testing, by reviewing completed reports and by selected site observation.

s. Analyze performance trend logs and monitoring data to verify performance.

t. Coordinate through GC and Owner and/or the O-REP, witness and verify manual PTs performed by installing Contractors. Coordinate re-testing as necessary until satisfactory performances achieved.

u. Maintain a master deficiency and resolution log (Issues Log) and a separate testing record. Provide the O-REP and A/E with written progress reports and test results with recommended actions.

v. Review equipment warranties to ensure that the Owner’s responsibilities are clearly defined.

w. Oversee and verify the training of the Owner’s operating personnel.

x. Compile and maintain a Commissioning Record and Building Systems book(s).

y. Review and verify the preparation of the O&M manuals.

z. Provide a Final Commissioning Report.

2.3. Warranty Phase

a. Coordinate and supervise required seasonal or deferred testing and deficiency corrections.

b. Return to the site at 10 months into the 12-month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal commissioning. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
H. Owner and/or the O-REP

1. Design Phase
 a. In predesign develop the Owners Project Requirements (OPR) or Current Facility Requirements documenting:
 i. High level project goals and objectives and the benchmarks that will be used to evaluate achievement of stated goals and objectives.
 ii. Commissioning provider scope appropriate for the project
 iii. Design team participation in the commissioning process including OPR/CFR workshop, responses to design review comments and meetings to resolve design issues, incorporation of commissioning specifications into project manual, development and delivery of basis of design documentation, training of O&M staff, etc.
 iv. Intervals within the design schedule design documents will be submitted for review.

1.2. Construction and Acceptance Phase
 a. Facilitate the coordination of the commissioning work by the CxP, and with the GC and CxP, ensure that commissioning activities are being scheduled into the master schedule.
 b. Review and Accept and/or Reject the final Commissioning Plan – Construction Phase.
 c. Attend a Commissioning Kickoff and Scoping meetings and other commissioning team meetings.
 d. Perform the normal review of contractor submittals.
 e. Authorize the GC to furnish a copy of all construction documents, addenda, change orders, approved submittals, shop drawings, etc. related to the project to the CxP.
 f. Review and accept and/or reject the test procedures submitted by the CxP, prior to commissioning testing.
 g. When necessary, observe and witness Const-CK, start-up and Commissioning Testing of selected equipment.
 h. Review commissioning progress and deficiency reports.
 i. Coordinate the resolution of non-compliance and design deficiencies identified in all phases of commissioning.
 j. Sign-off (final approval) on individual commissioning tests as completed and passing.
 k. Assist the GC in coordinating the training of Owner personnel.
 l. Manage the contract of the A/E and of the GC.

2-3. Warranty Phase
 a. Assist the CxP as necessary in the seasonal or deferred testing and deficiency corrections required by the Specifications.

I. Contractor - General

1. Construction and Acceptance Phase
a. Facilitate the coordination of the commissioning work by the CxP with the Subs to ensure that commissioning activities are scheduled per project scheduling requirements and updated in the project specifications.
b. Include the cost of commissioning incurred by the Contractor in the contract price.
c. Forward completed Const-CKs to CxP weekly or monthly as specified.
d. In each purchase order or subcontract written, include requirements for submittal data, O&M data, commissioning tasks and training.
e. Ensure that Subcontractors and equipment or material suppliers execute their commissioning responsibilities according to the bidding documents and schedule.
f. Schedule and attend a Commissioning Kickoff and Scoping meeting and other necessary meetings requested by the CxP to facilitate the commissioning process.
g. Address current punch list items before scheduling commissioning testing.
h. Verify completion of Const-CK and Coordinate test schedule with CxP and required contractors.
i. Provide skilled technicians to execute starting of equipment and execution of commissioning tests. Ensure that required personnel are available and present, during the agreed-upon schedule, and to complete test procedure adjustments and problem solving unidentified issues. Correct deficiencies (differences between specified and observed performance) as interpreted by the CxP, Designer and Engineer and retest the equipment as necessary.
j. Prepare red-line as-built drawings that properly identify field conditions from contractor-generated coordination drawings.
k. Provide and coordinate training of the Owner’s operating personnel as specified and as outlined in the Commissioning Plan.
l. Provide a complete summary of manufacturers to determine requirements to maintain the validity of the materials, equipment, system and warranty.
m. Prepare O&M manuals, according to the bidding documents, including clarifying and updating the original sequences of operation to as-built conditions and sent to CxP for review thirty (30) days prior to initial training.
n. Provide additional requested documentation, prior to normal O&M manual submittals, as outlined in Para. 1.07 of this section.

2. Warranty Phase
 a. Ensure seasonal, post occupancy and deferred testing (if required) is executed and witnessed by the CxP, according to the Project Manual.
 b. Ensure that deficiencies are corrected and necessary adjustments made to O&M manuals and as-built drawings for applicable issues identified in any seasonal or deferred testing.

J. Contractor - Mechanical, Controls, and HVAC Test & Balance
 1. Construction and Acceptance Phase
 a. Contractor shall assist (along with the Designer) in clarifying the operation and control of commissioned equipment in areas where the Specifications, control
drawings or equipment documentation is not sufficient for writing detailed testing procedures.
b. Provide limited assistance to the CxP in preparing the Test Procedures. Contractor shall review test procedures to ensure feasibility, safety and equipment protection and provide necessary written alarm limits to be used during the tests.
c. Develop a full start-up and initial checkout plan using manufacturer’s start-up procedures and the Const-CK from the CxP for commissioned equipment. Submit to CxP for review and approval prior to start-up. Refer to Section 3.02 for further details on start-up plan preparation.
d. Perform and clearly document the start-up and system operational checkout procedures, providing a completed copy to the CxP.
e. Air and water TAB shall be completed with discrepancies and problems remedied before commissioning testing of the respective air- or water-related systems.

K. Contractor – Mechanical: The responsibilities of the Contractor, during construction and acceptance phases in addition to those listed in J. above are:

1. Assist and cooperate with Testing and Balancing and CxP by:
 a. Putting all HVAC equipment and systems into operation and continuing the operation during each working day of TAB and commissioning, as required.
 b. Including cost of sheaves and belts changes that may be required by TAB.
 c. Providing test holes in ducts and plenums where directed by TAB to allow air measurements and air balancing. Provide an approved plug.
 d. Providing temperature and pressure taps according to the Construction Documents for TAB and commissioning testing.

2. Install a Pressure/Temperature (P/T) plug within 4” of water sensors that are input points to the control system.

3. List and clearly identify on the as-built drawings and system manual drawings the locations of air-flow stations.

4. Prepare a preliminary schedule for Divisions 22 and 23 pipe and duct system testing, flushing and cleaning, equipment start-up for use by the CxP. Update the schedule as appropriate.

5. Notify the CxP when pipe and duct system testing, flushing, cleaning, start-up of each piece of equipment. Notify the CxP, ahead of time, when commissioning activities not yet performed or not yet scheduled will delay construction. Be proactive in seeing that commissioning processes are executed and that the CxP has the scheduling information needed to efficiently execute the commissioning process.

L. Contractor - Controls and Instrumentation: The commissioning responsibilities of the Contractor, during construction and acceptance phases in addition to those listed in J above are:

1. Sequences of Operation Submittals: The Contractor’s submittals of control drawings shall include complete detailed sequences of operation for each piece of equipment, regardless of the completeness and clarity of the sequences in the Specifications. They shall include:
 a. An overview narrative of the system (1 or 2 paragraphs) generally describing its purpose, components and function.
b. Interactions and interlocks with other systems.
c. Written sequences of control for packaged controlled equipment. (Equipment manufacturers’ stock sequences may be included, but will generally require additional narrative).
d. Start-up sequences.
e. Warm-up mode sequences.
f. Normal operating mode sequences.
g. Unoccupied mode sequences.
h. Shutdown sequences.
i. Capacity control sequences and equipment staging.
j. Temperature and pressure control: setbacks, setups, resets, etc.
k. Detailed sequences for all control strategies, e.g., economizer control, optimum start/stop, staging, optimization, demand limiting, etc.
l. Effects of power or equipment failure with standby component functions.
m. Schedules of alarms and trigger setpoints.
n. Emergency shutdown procedures.
o. Schedule of original setpoints, parameters, and other control settings or fixed values, delays, etc. that will be useful during testing of equipment.
p. Seasonal operational differences and recommendations.
q. Schedule of final setpoints and parameters that are typically set or adjusted by operating staff; and any other control settings or fixed values, delays, etc. that will be useful during operation of the equipment.
r. To facilitate referencing in testing procedures, sequences shall be written in small statements, each with a number for reference. For a given system, numbers will not repeat for different sequence sections, unless the sections are numbered or provide ladder logic diagrams illustrating the control programming.

2. Control Drawings Submittal
 a. The control drawings shall have a key to all abbreviations.
b. The control drawings shall contain graphic schematic depictions of the systems and each component.
c. The schematics will include the system and component layout of any equipment that the control system monitors, enables or controls, even if the equipment is primarily controlled by packaged or integral controls.
d. Provide a full points list with at least the following included for each point:
i. Controlled system
 ii. Point abbreviation/label
 iii. Point description - DB temp, airflow, etc.
 iv. Display unit
 v. Control or set point - point that controls equipment and can have its set point changed (OSA, SAT, etc.)
 vi. Monitoring point - Point that does not control or contribute to the control of equipment, but is used for operation, maintenance, or performance verification.
 vii. Intermediate point - point whose value is used to make a calculation which then controls equipment (space temperatures that are averaged to a virtual point to control reset).
viii. Calculated point - virtual point generated from calculations of other point values. The Contractor shall keep the CxP informed of all changes to this list during programming and setup.

3. An updated as-built version of the control drawings and sequences of operation shall be included in the final controls O&M manual submittal and a copy furnished to the CxP.

4. Assist and cooperate with the CxP in the following manner:
 a. Using a skilled technician who is familiar with this building, execute the testing of the controls system as specified for Contractor project Contract Documents. Assist in the testing of equipment specified in project Contract Documents.
 b. Execute control system trend logs specified in project Contract Documents.

5. The Contractor shall prepare a written plan, indicating in a step-by-step manner, the procedures that will be followed to verify the control system. At minimum, the plan shall include for each type of equipment controlled by the automatic controls:
 a. Test System name
 b. List of devices
 c. Step-by-step procedures for testing each controller after installation, including:
 i. Process of checking proper hardware and wiring installation.
 ii. Process of downloading programs to local controllers and checking that they are addressed correctly.
 iii. Process of performing operational checks of each controlled component.
 iv. Plan and process for calibrating valve and damper actuators and all sensors.
 v. A description of the expected field adjustments for transmitters, controllers and control actuators which can be used in the event that control responses fall outside of expected values.
 d. Provide a signed and dated certification to the CxP upon completion of the checkout of each controlled device, equipment and system prior to testing for each piece of equipment or system, that system programming is complete as to respects of the Bidding Documents, except testing requirements.
 e. Beyond the control points necessary to execute documented control sequences, provide monitoring, control and virtual points as specified.
 f. List and clearly identify on the as-built duct and piping drawings the locations of static and differential pressure sensors (air, water and building pressure).
 g. Provide fittings, operations, and connections necessary for testing CO2, CO, VOC, particulate, etc. sensors installed as part of the building automation system. CxP will provide test gas as appropriate for each sensor.

M. Contractor – Testing, Adjusting & Balancing (TAB): The duties of the Contractor, in addition to those listed in K & L above are:
 1. Submit the outline of the TAB plan and approach for each system and component to the CxP six (6) weeks prior to starting the TAB. This plan will be developed after the Contractor has some familiarity with the control system and general construction schedule.
 2. The submitted plan will include:
 a. Certification that the Contractor has reviewed the construction documents and the systems with the design engineers and contractors to sufficiently understand the design intent for each system.
b. An explanation of the intended use of the building control system. The Contractor will comment on feasibility of the plan.

c. Field checkout sheets and logs to be used that list each piece of equipment to be tested, adjusted and balanced with the data cells to be gathered for each.

d. Discussion of what notations and markings will be made on the installed duct and piping and their associated drawings during the process.

e. Final test report forms to be used.

f. Detailed step-by-step procedures for TAB work for each system and issue: terminal flow calibration (for each terminal type), diffuser proportioning, branch / sub-main proportioning, total flow calculations, rechecking, diversity issues, expected problems and solutions, etc. Criteria for using air flow straighteners or relocating flow stations and sensors will be discussed. Provide the analogous explanations for the water side.

g. List of all air flow, water flow, sound level, electrical data, system capacity and efficiency measurements to be performed and a description of specific test procedures, parameters, formulas to be used.

h. Details of how total flow will be determined (Air: sum of terminal flows via BAS calibrated readings or via hood readings of terminals, supply (SA) and return air (RA) pitot traverse, SA or RA flow stations. Water: pump curves, circuit setter, flow station, ultrasonic, etc.).

i. The identification and types of measurement instruments to be used, their serial numbers and most recent calibration date.

j. Specific procedures that will ensure that both air and water side are operating at the lowest possible pressures and methods that will be used to check this.

k. Confirmation that TAB understands the outside air ventilation criteria under all conditions.

l. Details of how minimum outside air cfm will be verified and set and minimum/maximum setpoints with summation of the difference between exhaust and make-up air at minimum OSA setpoints (total building, zone, etc.).

m. Details of how building static and exhaust fan / relief damper capacity will be checked.

n. Proposed selection points for sound measurements and sound measurement methods.

o. Details of methods for making any specified coil or other system plant capacity measurements.

p. Details of any TAB work to be done in phases (by floor, etc.) or of areas to be built out later.

q. Details regarding specified deferred or seasonal TAB work.

r. Details of all exhaust fan balancing and capacity verifications, including any required room pressure differentials.

3. A running log of events and issues shall be kept by the Contractor. Submit hand-written reports of discrepancies, deficient or uncompleted work by others at completion of each site visit, contract interpretation requests and lists of completed tests to the CxP.
4. Communicate in writing to the Contractor and CxP all set point and parameter changes made or problems and discrepancies identified during TAB which affect the control system setup and operation.

5. Provide a draft TAB report within two weeks of completion to CxP with a copy to the Engineer. The report will contain a full explanation of the methodology, assumptions and the results in a clear format with designations of uncommon abbreviations and column headings. The report should follow the latest and most rigorous reporting recommendations by AABC, NEBB or ASHRAE Standard 111.

6. Provide the CxP and Engineer with any requested data gathered, but not shown on the draft reports.

7. Provide a final TAB report to the CxP and the Engineer with details, as in the draft.

8. Conduct Tests and checks as necessary to demonstrate the accuracy of the report to the CxP as specified for TAB in project Contract Documents.

N. Contractor - Electrical: The commissioning responsibilities applicable to the Contractor for electrical systems are as follows (all references apply to commissioned equipment only):

1. Construction and Acceptance Phase
 a. Contractor shall assist (along with the design engineers) in clarifying the operation and control of commissioned equipment in areas where the Specifications, control drawings or equipment documentation are not sufficient for writing detailed testing procedures.
 b. The contractor shall review test procedures to ensure feasibility, safety and equipment protection and provide necessary written alarm limits to be used during the tests.
 c. Perform and clearly document completed pre-energizing construction checklists (Const-CK) and system operational checkout procedures, providing a copy to the CxP for review.

2. Warranty Phase
 a. Remove electrical distribution covers for CxP to conduct thermographic imaging scans when electrical system is electrically loaded and reinstall covers at completion of thermography. This test is anticipated to occur within 90 days of building occupancy.

O. Material Suppliers

1. Provide all requested submittal data, including detailed start-up procedures and specific responsibilities of the Owner to keep warranties in force.
2. Assist in equipment testing per agreements with Subcontractors.
3. Include all special tools and instruments (only available from vendor, specific to a piece of equipment) required for testing equipment according to these bidding documents in the base bid price to the contractor, except for stand-alone data-logging equipment that may be used by the CxP.
4. Provide information requested by CxP regarding equipment sequence of operation and testing procedures.
5. Review test procedures for equipment installed by factory representatives.
6. Provide and assist contractors in training of owner’s operating personnel in accordance with Section 01 79 00.

P. Contractors – Building Enclosure: The commissioning responsibilities applicable to the Contractor for building enclosure systems are as follows:

1. Construction and Acceptance Phases
 a. Attend a Commissioning Kickoff and Scoping meeting and other meetings necessary to facilitate the commissioning process.
 b. Contractors shall provide the CxP with normal cut sheets and shop drawing submittals of commissioned components and composite assemblies.
 c. Provide additional requested documentation, prior to completion of mock-up assemblies, to the CxP for finalizing commissioning testing procedures.
 i. Typically, this will include detailed manufacturer installation instructions, testing laboratory certifications/reports, and maintenance procedures, full details of any Owner-contracted tests, full factory testing reports, and full warranty information, including responsibilities of the Owner to keep the warranty in force clearly identified. In addition, the installation materials that are actually shipped with the building enclosure exterior wall components and the actual field checkout sheet forms to be used by the factory or field technicians shall be submitted to the CxP.
 ii. The CxP may request further documentation necessary for the commissioning process.
 iii. This data request may be made prior to normal submittals.
 d. Provide a copy of the submittals of commissioned building enclosure components, through normal channels, to the CxP for review and comment. Provide sufficient O&M data necessary to understand, operate, and maintain the system and/or assemblies and to inform those not involved in the design and construction process about the systems and assemblies. O&M data shall be provided in accordance with Section 01 78 01.
 e. Contractors shall assist (along with the design professionals) in clarifying the installation and operation of commissioned assemblies in areas where the Specifications or component/assembly documentation is not sufficient for writing detailed commissioning testing procedures.
 f. Provide limited assistance to the CxP in preparing the specific performance test procedures required. Subs shall review test procedures to ensure feasibility, safety and material protection during tests.
 g. Develop initial and full checkout plan using manufacturer’s procedures and the Const-CK for commissioned assemblies. Submit to CxP for review and approval prior to proceeding with installation of building enclosure.
 h. During the initial checkout process, execute the Const-CKs as provided via the GC by the CxP for components of the exterior wall and roof assembly to be commissioned.
 i. Perform and clearly document completed checkout procedures as required and/or listed on the Const-CK providing a signed and dated certification copy to the CxP.
 j. At applicable wall locations, conduct performance testing before installation of insulation and interior closure of the wall. Address current A/E punch list items
before performance testing. Exterior Wall Contractors will provide installation foreman to assist with execution of the TPs conducted on the mock-up assemblies to resolve installation issues and establish future installation practices necessary to correct deficiencies observed prior to commencing with installation of the exterior wall systems.

k. Exterior Wall Contractors will ensure that the installation foreman and sufficient labor assistance are available and present during the scheduled tests, adjustments and problem solving events.

l. At exterior wall, window, curtain wall, roof, roof drains, back-up drains, scuppers, skylights, etc., provide access to the test area for both the CxP representative and the contractor’s work force, via ladders, scaffolding, man-lifts, etc. If the subcontractor does not have access equipment, the GC is to provide the necessary equipment for access required for commissioning.

m. Provide labor necessary to execute test procedure under direction of CxP.

n. Correct deficiencies as interpreted by the CxP, GC, Owner and/or O-REP and A/E and retest as required.

o. Prepare redline as-built mark-ups for all applicable drawing sheets.

p. Provide training of the Owner’s operating personnel in accordance to Yellow Book criteria and project contract documents.

6.01 SYSTEMS TO BE COMMISSIONED

A. The following systems shall be commissioned in this project.

1. Building Enclosure:
 a. Roofing system – water-proofing, insulation, roof membrane, rain and ice shield, pitch, coping, flashing, curbs for mechanical equipment, downspouts, drains, scuppers
 b. Exterior skin – curtain wall, storefront, masonry, brick / stone veneers, precast panels, metal panels, stucco, siding, sun shades, expansion joint cover assemblies.
 c. Walls – vapor barriers, insulation, mortar nets, weeps, joints, sealants, masonry ties, damp proofing, composite sheet waterproofing, flashing
 d. Slab on grade – vapor barriers, waterproofing, drainage, foundation drains, crystalline waterproofing
 e. Doors and windows – sealants, mechanical operation, sills, flashing, end dams, hardware
 f. Water tests, mockups, wind loads, thermal infiltration
 g. Special design features – cornice, canopy, skylights, etc.
 h. Potential special roof conditions - green roof; roof terrace/roof garden

2. Mechanical Systems:
 a. Thermometers & gauges
 b. Vibration isolation
 c. Steam and condensate system
 d. Hot water heating systems
 e. Dedicated split system air conditioners and heat pumps
 f. Chemical water treatment systems
 g. Air terminal unit systems, VAV, AHU, chilled beams, etc.
h. Humidifiers and controls
i. Duct silencers
j. Dampers
k. Variable frequency drives & motors
l. Air distribution systems
m. Exhaust air systems and building pressurization controls
n. Test and balance verification
o. Refrigeration equipment and controls
p. Chilled water system
q. Boilers

3. HVAC Control Systems
 a. Component FPT and calibration
 b. Control air supply
c. Air terminal units (non-lab)
d. Sequence controls to include:
e. AHU, 100% OSA
f. EAHU, HVAC equipment
g. AHU, H&V
h. Exhaust air fans
i. Differential bypass valve
j. Air terminal units, CV
k. Air terminal units, VAV / CV
l. Air terminal units, VAV
m. Heat exchanger
n. Variable speed pumps
o. Cabinet unit heaters
p. Humidifiers
q. Water heaters
r. Heating coils / radiant panels
s. Operation of equipment during switchover from normal to emergency power and vice versa.
t. Equipment failure modes and recovery
u. Graphic display
v. Trend logs (CxP to define and review required trend logs over extended period)
w. Status review screens, checks and alarming
x. Network communication
y. Dashboard
z. Metering (to include verification of communication to Ion database)

4. Plumbing
 a. Cleaning / flushing water systems
 b. Water filtration (general use)
c. Domestic hot water systems
d. Tempered water systems

5. Electrical Systems:
 a. Service switchgear
 b. Emergency power system
c. Generators
d. Lighting controls (scheduled activators and occupancy sensors)
e. Daylight dimming controls
f. Switchboards
g. Distribution panel boards
h. Motor control centers
i. Power monitoring and metering
j. Transient voltage surge suppressors
k. Variable frequency and speed drives
l. Grounding and ground fault systems
m. Over-current protective devices
n. ATS auto transfer switches
o. Buss duct and tap devices
p. Fire alarm and smoke detectors
q. Standby and emergency power systems
r. Emergency lighting
s. Electrical primary voltage system
t. Security systems

6. Renewable Energy Systems:
 a. Heat recovery systems
 b. Controls and thermostats
 c. Photovoltaic cell panels (solar power systems)
 d. Solar hot water systems
e. Geothermal systems
f. Cistern pumps & filtration

7.01 MEETINGS
 A. Scoping Meeting. Within 60 to 90 days of commencement of construction, the CA will schedule, plan and conduct a commissioning scoping meeting with the entire commissioning team in attendance. Meeting minutes will be distributed to all parties by the CA. Information gathered from this meeting will allow the CA to revise the Draft 2 Commissioning Plan to its final version, which will also be distributed to all parties.

 B. Miscellaneous Meetings. Other meetings will be planned and conducted by the CA as construction progresses. These meetings will cover coordination, deficiency resolution and planning issues with particular Subs. The CA will plan these meetings and will minimize unnecessary time being spent by Subs. For large projects, these meetings may be held monthly, until the final 3 months of construction when they may be held as frequently as one per week.

8.01 REPORTING
 A. The CxP will provide regular reports to the CM or PM, depending on the management structure, with increasing frequency as construction and commissioning progresses. Standard forms are provided and referenced in the Commissioning Plan.

END OF SECTION
022100 – Surveys

1.01 GENERAL

A. The following specifications and standards are to be followed in the performance of topographic, utility and boundary surveying on the Georgia Tech campus.

1. A complete survey is to be performed for each building/project site by a registered land surveyor who is duly licensed in the State of Georgia. Survey shall include property boundaries, topography, planimetrics and underground utilities.

2. Surveyor must have Errors and Omission Insurance of not less than $1,000,000.

3. Survey is to include information for, but not necessary limited to, topography, buildings, roads, sidewalks, etc., subsurface and above and below ground utilities, including closest point of utility system tie-in if not on site, easements, significant vegetation, and any zoning or covenant requirements, such as setbacks, etc. Surveyor is to allow Georgia Tech Office of Facilities to review and comment on survey before submission of final hard copy and electronic deliverables.

4. All work is to be performed in accordance with the Minimum Technical Standards for land surveying in the State of Georgia, the requirements of this document, and with the current requirements of the Board of Regents of the University System of Georgia, the Georgia State Financing and Investment Commission, and the Georgia Institute of Technology, as identified in the following manuals:
 a. Building Project Procedure 2000
 b. Board of Regents of the University System of Georgia
 c. Georgia State Financing and Investment Commission
 d. Form No. G.A.-5, Memorandum of Policy

5. Surveyor is responsible to obtain full copies of the current project requirements.

7. Horizontal datum shall be NAD 83/(HARN96), Georgia West Zone. The use of local or assumed coordinate systems is not acceptable.

8. Survey shall state whether the property or topographic area being surveyed does or does not lie within a flood zone, and shall identify the map number for the FEMA F.I.R.M. referenced. Survey shall show the limits of each flood zone as it affects the property or topographic area being surveyed. If the flood zone is studied and has BFE survey shall show the correct location of the flood limits. If the flood zone is unstudied and the location shown on the survey is scaled, survey shall show the line as approximate location scaled from the flood map. Label on the survey the correct flood zone designations with the respective information on the correct side of the line.

9. The following functional requirements of a survey for Georgia Institute of Technology:
 a. To provide an accurate representation of all surface and subsurface objects and features in the project boundary.
 b. To provide an electronic document to the designers of the project which represents the existing conditions on the surface and subsurface. Because all of the design efforts for Georgia Institute of Technology will be in BIM design systems it is a fundamental requirement that all supporting design work be in 3D modeling. Thus
the beginning of a project is the survey. Therefore all surface features/objects shall be 3D AutoCAD Civil 2010 or later, all subsurface pressurized systems shall be in AutoCad MEP 2010 or later. All underground utilities and structures shall be 3D objects in a separate file that is XREF.

2.01 DRAWING GUIDELINES

A. All survey plat and drawings shall show the following:
B. North arrow - North shall be oriented toward the top of the sheet.
C. Scale - numeric and graphic.
D. Title block
E. The name of the project.
F. The name and address of the surveyor.
G. The date.
H. The address of the property.
I. Not less than three permanent monuments shall be established for sites of 3 acres and larger. Monuments to be 3" brass disk set with concrete cylinder, 18" deep with 12" iron spike in bottom. Monuments shall be established outside of the area that will be disturbed by construction of the project. Survey drawings and plats shall indicate horizontal and vertical datum for survey monuments and control points.
J. One property corner on each site shall be referenced by survey to the horizontal and vertical control.
K. A complete legend is to be shown, including all abbreviations, symbols and line types.
L. Georgia Tech has existing control points at various locations across the campus. Any of these points that fall within the area of the survey are to be shown on the survey drawing.
M. Create survey a drawing file with all surface features/objects shall be in 3D AutoCAD Civil 2010 or later, all subsurface pressurized systems shall be in AutoCad MEP 2010 or later. All underground utilities and structures shall be 3D objects and supply on CD-ROM. Survey information will be separated with the layer system established by the AIA CAD Layer Guidelines as published in the United States National Cad Standards Manual. CAD data shall be in engineering units (decimal feet) and CAD files shall include all external reference files. AutoCad drawing files shall be produced at a scale of 1 to 1 in model space i.e. drawing measurements between two objects to be equal to the actual physical distance measured in the field in decimal feet. All symbols, lettering, fonts, shapes, and blocks shall be saved with each drawing.
N. Existing records and survey will be provided, if available, by the Georgia Tech Office of Facilities, 955 Fowler St., NW, Atlanta, GA. Georgia Tech is not responsible for errors or omissions in these records.

3.01 Boundary Survey

A. Boundary surveys shall meet the minimum technical standards for the State of Georgia, along with ALTA/ACSM Land Title Survey requirements, if an ALTA survey is requested by Georgia Tech.
B. At minimum, surveyor shall:
 1. Locate all property corners and set permanent markers for any missing corners.
 2. Provide a survey plat drawn to a scale of 1-inch equals 20-feet or as otherwise requested by Georgia Tech Office of Facilities which illustrates:
 a. Bearing, distance, and appropriate curve data for all property lines.
 b. Type and size of all survey markers set.
 c. Improvements within 25 feet outside of property lines, if surveyor can obtain permission from the adjoining land owner or tenant.
 d. All possible encroachments, overlaps or gaps between adjoining properties.
 3. Provide a legal description for the property surveyed.
 4. Locate alleys, right of ways, streets, easements, and other items of similar nature on or adjoining the property with property identification of each. In the case of an easement, indicate underground, surface, or overhead improvements for which the easement was established. Surveyor shall not be required to run title searches.

4.01 Topographic and Utilities Surveys:
 A. Survey shall meet the following minimum requirements: Contours:
 1. Establish permanent base reference elevation point from which contours are established and elevation of building floors can be determined.
 2. Include entire site, extending contours to the survey limits, to 25 feet beyond property lines and to the far side of adjacent streets.
 3. Standard contour interval shall be 1-foot for sites with majority of slopes under 10% (atypical site).
 4. Contour interval of 2-feet may be acceptable for sites with majority of slopes over 10% if approved in advance by Georgia Tech’s designated project manager. Otherwise contour interval of 1-foot shall be used for area where slopes are less than 10%.
 5. Provide spot elevations of existing structures, curbs, crown of roads, drainage rims/covers, top and bottom of retaining walls, etc. Provide spot elevations as necessary to adequately define tops and bottoms of slopes, drainage swales, and drainage patterns.
 6. Show any rapid changes in grade on adjacent property.
 7. At minimum, provide spot elevations across site at approximately 50 foot grid intervals.
 8. Contours and street and/or landscape shall be provided in an AutoCad drawing file and shall be continuous elevated polylines and shall be in 3D with each elevation line located in the Z axis at the noted elevation.
 9. Survey work shall include removal of silt and debris materials to establish true depths, invert elevations, sections and elevations for roadway pavements, curb and Gutter, culverts, storm drainage structures and pipes, sanitary sewer manholes and pipes, etc.
 10. Surveyor to coordinate with Georgia Tech Plant Operations personnel in the event that utility structures or pipes are obstructed with more than a minimal amount of debris.
 11. Footprints and finished floor elevations for all building structures.
 12. Finished floor elevations shall be provided at all building entrances.
13. All deciduous and coniferous trees 6-inches in caliper and larger.

14. Show botanical name, common name and caliper measured at approximately 48-inches above ground surface.

15. Show road and street markings including: stop bars, cross walks, white stripes, yellow stripes, dashed lines, directional arrows, and painted islands. Show all parking lot markings including, cross walks, parking strips, handicap markings and signs, and painted islands/gores.

B. Surveyor shall engage a private utility locator to mark underground utilities in accordance with CI/ASCE 38-02 Standard of Quality Level C using GPR (ground penetrating radar) and/or other similar utility locating devices. Utility locator must have a minimum of 5 years experience in marking underground utilities, and must have Errors and Omission Insurance of not less than $1,000,000.

C. Utility locator shall locate and mark all traceable underground utilities within the survey area as follows:

1. Research public utility records, private utility company records, and facility utility records to determine the existence of all underground utilities within the survey area.

2. Mark all underground utilities within the survey area. Determine and record depths to within plus or minus 1-foot in accuracy.

3. Provide all utilities found consisting of size, type, material, in 3D see "DRAWING GUIDELINES" and identify controlling entity in the LEDGND.

4. Provide horizontal and vertical location of the all the underground utilities marked within the survey area.

5. Utility locator is to review the final survey and certify that utilities shown are correct.

6. Utilities locating service is not intended to include tracing of sanitary sewer service lines, roof drain leaders and other non-traceable sanitary sewer and storm drain connections that are not evidenced by above ground features or shown on available utility maps.

7. Utilities on the Georgia Tech campus typically include the following. Water mains, services and appurtenances including fire hydrants, valves, PIV’s, FDC’s, meters and BFP vaults; survey to indicate sizes and materials.

8. Gas mains, services CAD in 3D pipe sizes, and meters; survey to indicate sizes and materials.

9. Sanitary sewer manholes, mains and services CAD in 3D pipe sizes; survey to indicate manhole top and invert elevations, pipe sizes and materials.

10. Storm drainage inlets, manholes, pipes, trench drains, and paved ditches; survey to indicate structure top elevations, grate elevations, pipe sizes and materials.

11. Combined sewer manholes, junction boxes, inlets and pipes CAD in 3D pipe sizes.

12. Overhead and underground electric power lines; survey shall indicate actual size of underground electric power manholes, duct bank widths and vaults top, bottom inside spot elevations and outside edges of manhole structures.

13. Overhead and underground duct bank widths telephone and data-com lines.

15. Steam and condensate return lines, CAD in 3D pipe sizes with insulation, and vaults top, bottom inside spot elevations and outside edges of manhole structures.

16. Chilled water supply and return lines CAD in 3D pipe sizes with insulation and vaults top, bottom inside spot elevations and outside edges of manhole structures.

17. Septic tanks, grease traps, oil grit separators, and fuel tanks.

18. All utilities marked by the utilities locator will be field located and shown on the survey. All other information shown and reported by the utilities locator will be shown on the survey in 3D solid objects. Each utility shall be located on a separate layer. All pressure type utility systems shall be drawn in AutoCAD MEP 2010 or later. In AutoCad MEP for each utility use the appropriate system and layer for the specific utility. The Utility 3D object shall be drawn in the measured/detected elevation in the Z cad plane and the top of pipe/structure shall be noted along the line every 100ft. The specific utility pipe or structure size shall be researched as required above. All pipe and structure labels shall be at Elevation Zero (0). Note: Many subsurface systems are not single pipes, such electrical duct banks, chill water systems and steam distribution systems. The subsurface system usually are 2 ft to 6 ft wide. Note pipes and ductbanks are not laid out in a wave they are in straight lines with have designed bends and turns.

19. The surveyor/utility locator shall request public utility location and the surveyor/utility locator shall visit contact/visit each public utility and research their records to obtain public underground utility sizes and shapes. The surveyor/utility locator shall locate and show on the survey in 3D object utilities but not limited too:
 a. All public utilities and All Georgia Tech owned utilities.
 b. All structures depth of top and bottom and the outside boundaries of all structures.
 c. Structures are not limited to but shall include:
 d. All manholes for electrical, telecommunications, public natural gas, GT-Fiber, GT-Gas (GT owns its own gas distribution system in the northern part of campus), steam and chill water.
 e. Note steam systems have two lines a steam supply and a condensate return line. Chill water always has a supply and return line. All other information shown and reported by the utilities locator will be shown on the survey as 3D objects.
 f. This information is to include sizes and types of the underground utilities and information as to why any particular utility whose known presence within the survey area was not marked or not completely marked.

20. In addition, survey shall show any other apparent characteristics that would include but not necessarily be limited to the following:
 a. Wells
 b. Ditches, canals, springs, seeps, etc.
 c. Bodies of water including lakes, ponds, wetlands, floodplains, creeks, and streams. Stream data to include spot elevations adequate to define flow channel and top of bank. Stream buffers.
21. Pothole Services: The surveyor may be asked as an additional task to provide Pothole investigation services and to record these findings on the survey.
 a. Provide a subcontractor to perform vacuum excavation at designated locations.
 b. The subcontractor shall have contractors general liability with limits no less than $1,000,000 per occurrence. The sub-contractor shall if necessary when working in City of Atlanta streets shall provide all required bonds and insurance to the City of Atlanta to obtain an excavation permit. The excavation contractor shall pay all City of Atlanta fees necessary for the permit.
 c. The vacuum excavation contractor shall remove hard surface materials in clean cuts using straight lines. The surveyor shall record the elevation of the surface and the elevation of the top of pipe or structure being excavated. The vacuum excavation sub-contractor shall fill the hole with suitable materials and compact to 95% compaction and patch the surface with suitable materials that match the original hard surface materials to provide a non disturbed appearance.

5.01 SERVICES
 A. New building surveying services shall include quotes to provide the following special plots as additional services:
 1. Boundary survey for recording: maximum size 17" x 21" with a legal description of the boundary.
 2. 2D utility plots without topographical and spot elevation.
 3. Signed survey to include all surface features, as described above in "Topographic and Utilities Surveys", without spot elevations of non-structures, underground structures and gravity and pressurized systems.
 4. Provide a CD or Flash Drive with AutoCad files in 3D AutoCAD Civil 2010 or later and all subsurface pressurized systems shall be in AutoCad MEP 2010 or later. All 3D underground utilities and structures shall be 3D objects in a separate file that is XREF into the Topo survey file.

END OF SECTION
030000- Concrete

1.01 GENERAL:

A. The Board of Regents Building Project Procedure and there Guidelines require that new construction conform to International Building Code Type IA or IB, NFPA Type I(443) or I(332), formerly SBC Type I or II. Modifications to an existing structure should be consistent with the original. Our best experience has been with concrete frame structure including concrete exit stair ways. We strongly favor structural work in reinforced concrete as opposed to steel systems.

B. Concrete foundation systems are preferred among the alternatives that may be as recommended by the geotechnical engineer. Our best experience with local soil conditions has been with augured cast piling, aka caisson piers, bearing on bed rock. Matt foundations and spread footings are suitable for lower scale structures. Driven steel pilings or geo-pier foundations should not be used.

C. Exposed poured in place (PIP) concrete should be considered a structural material, and finished with a surface coating. Experience with vertical formed surfaces has been unsatisfactory, providing an inferior appearance; and then requiring a coating for restoration of the appearance. Therefore, exterior or interior exposed concrete must be specified to receive a finish material, such as cement stucco or a specification grade concrete coating.

D. Roof decks of new construction must be designed in concrete unless otherwise submitted and approved by Georgia Tech Design and Construction. Long span steel structure may qualify for a variance. Any request for variance to this requirement should be made to the Campus Architect at the schematic design phase.

E. Parking garage structures should be concrete. A finish coating is not required on the interior exposed surfaces; however, a white coating in the overhead provides improved lighting reflectance to offset the amount of lighting required. The façade must have an architectural finish material consistent with the character of the campus district, requiring little maintenance over the life of the structure.

F. Concrete is a structural material. Therefore, either exterior or interior exposed concrete must be coated with a finish material, such as plaster, stucco, e.i.f.s., etc.

G. Georgia Tech strongly favors the use of light colored concrete (gray or white) because of its high reflectance which assists in reduction of heat island effect.

H. To the maximum extent feasible and practicable, the construction bid documents are to specify that no less than 90% of materials (in terms of materials and products cost) for concrete construction be harvested, extracted, or manufactured in the State of Georgia. It is Georgia Techs strong preference to begin with the closest local (Atlanta Metropolitan Area) region first, and then move outward within the state, and finally up to the 500 mile region beyond.

I. Steel rebar shall have a recycled content of at least 80%.

END OF SECTION
040000- Masonry

1.01 GENERAL

A. Brick masonry to be designed and constructed per the standards set by the Brick Institute of America.

B. Brick color standard is red range per the pallet of the campus. An excellent example of this range can be seen on the Ford Environmental Science and Technology building.

C. Select mortar tinted in light values of “natural range” colors. Utility grade mortar is not appropriate for architectural brickwork.

D. Brick selections and mortar colors to be reviewed and approved by Facilities Design and Construction, Campus Architect.

E. Retaining walls should be constructed of granite with stone caps or structural concrete walls with brick veneer and precast concrete caps. Walls should conform to the Georgia Institute of Technology Campus Landscaping Standards and Master Plan (see Section 01100).

F. Images of recommended campus rock wall construction are available for reference.

G. For retaining walls, please refer to Georgia Tech Landscape Standards http://www.facilities.gatech.edu/dc/standards/LANDSCAPE.pdf

END OF SECTION
050000- Metals

1.01 GENERAL

A. In order to achieve the Fire Rating as required by the Building Code, structural steel and steel decking may be protected with gypsum board sheathing, as well as by sprayed fireproofing systems.

B. Where gypsum board sheathing protection is not practical, use sprayed fireproofing systems. Where this material is exposed to the interior, a sealer overcoat of acrylic polymer is recommended.

C. Where conditions require, sprayed thermal insulation can be used in conjunction with sprayed fireproofing. See Division 07.

D. All structural steel in exterior locations (such as cornices, parapets or canopies) must be steel components that are shop coated and assembled on-site.

E. Wherever dissimilar metals may come in contact with each other in exterior conditions, they must be separated with an approved layer of bituminous coating. In areas exposed to exterior conditions, galvanized metal or zinc plated fasteners shall not be used to anchor aluminum or copper; use stainless steel, aluminum or copper fasteners.

F. See also Section 099000 Paints and Coatings.

END OF SECTION
061000- Rough Carpentry

1.01 GENERAL:

A. Use fire treated 3/4" plywood for backboards in electrical, voice and data rooms.

B. Use pressure treated wood for blocking where moisture may be encountered, such as below grade locations and roof locations. Recycled composite materials are also acceptable.

END OF SECTION
064000- Architectural Woodwork

1.01 GENERAL:
 B. In food service areas and other areas where wet conditions are present, the preferred material for countertops is solid surfacing material, 2" thick and are expected to have a minimum 10 year lifespan.
 C. Drawer sides and backs to be solid hardwood lumber. Drawer bottoms and rear panels to be 1/4" plywood or tempered hardboard.
 D. Refer to Section 015721 for VOC requirements.
 E. See Section 123000 for Laboratory Casework requirements.

END OF SECTION
071000- Dampproofing and Waterproofing

1.01 GENERAL

A. Sheet membrane waterproofing systems such as Grace Products systems are preferred over troweled mastic systems. Include geotextile drainage fabric and protection board. Provide positive drainage at the base of building foundation walls below grade.

B. Extend waterproofing 6 inches above finish grade.

C. To retard efflorescence, install dampproofing and cap flashing on retaining walls and exterior walls with masonry or stone veneers.

D. Flexible membrane flashing products as used in masonry construction should be modified asphalt such as Grace Products Vycor Plus or high performance flexible membrane such as Firestone Enverge FlashGard Thru Wall Flashing.

END OF SECTION
072100- Thermal Insulation

1.01 GENERAL

A. Levels of insulation should comply with the latest ASHRAE 90.1 requirements.

B. Minimum R-values are as follows

1. Roofs
 a. Low slope roofs: Insulation entirely above deck: LTTR -20 (minimum). Re-roofing may dictate a lower LTTR as appropriate for site and structure. Insulation R values proposed below LTTR-20 requires approval by Georgia Tech Facilities- Design and Construction.
 b. Metal building roof: R-19

2. Attic and other: R-38

3. Walls
 a. Mass: R-7.6 ci
 b. Metal Building: R-13
 c. Steel-Framed: R-13 + R-3.8 ci
 d. Wood Framed/Other: R-13

4. Floors
 a. Mass: R-6.3 ci
 b. Steel-Joist: R-19
 c. Wood-Framed/ Other: R-19

5. Slab on Grade Floors
 a. Heated: R-10 for 24 in

6. Opaque Doors
 a. Swinging U-.0700
 b. Non-swinging: U-1.450

7. Vertical Glazing 0-40% of Wall
 a. Nonmetal framing: U-.065, SHGC 0.25
 b. Metal framing: U-.060, SHGC 0.25
 c. Metal framing entrance door: U-.090, SHGC 0.25
 d. All other metal framing: U-.065, SHGC 0.25

14. Skylights (assemblies)
 a. Glass, Class 3 with curb: U-1.17
 b. Acrylic, Class 3, with curb: U-0.6
 c. Without curb: U-0.69

C. The following areas of the building envelope should be sealed, caulked, gasketed or weather-stripped to minimize air leakage
1. Joints around fenestration and door frames
2. Junctions between walls and foundations, between walls at building corners, between walls and structural floor or roofs and between walls and roof or wall panels.
3. Openings at penetrations of utility services through roofs, walls and floors
4. Site built fenestration and doors
5. Building assemblies used as ducts or plenums
6. Joints, seams and penetrations of vapor retarders
7. All other openings in the building envelope

END OF SECTION
072700 Firestopping and Smoke Barrier Caulking

1.01 General

A. The firestopping caulk shall be a one-part, intumescent, latex elastomer. The caulk shall be capable of expanding a minimum of 3 times at 1000°F. The material shall be thixotropic and be applicable to overhead, vertical and horizontal firestops. The caulk shall be listed by independent test agencies such as UL or FM and be tested to, and pass the criteria of, ASTM E 814 Fire Test, tested under positive pressure. It shall comply with the requirements of the NEC (NFPA-70), BOCA, ICBO, SBCCI and NFPA Code #101.

END OF SECTION
075000 Membrane Roofing & Flashing

1.01 GENERAL

A. Low-sloped roofing systems: A premium high temperature TPO roofing system. Adhered systems are preferred. Firestone Platinum .080 UltraPly TPO is the basis of design. Consult the Facilities Design & Construction Department at the schematic design phase for design of roofing system and related roof accessories.

B. The Board of Regents Building Project Procedure Manual, Appendix 6 A, under Roofing Systems indicates that use of single ply roofing requires the approval by the Board of Regents Vice Chancellor for Facilities. Georgia Tech Design & Construction may administer the approval process on behalf of the project.

C. Exposed underside metal (aesthetic) decking and internally insulated structural concrete deck roofing systems: Adhered high temperature fleece-backed TPO roofing in low-rise foam or cold adhesive applied SBS Modified Bitumen with white, highly reflective, granule surface roofing is acceptable for new buildings having concrete roof decks and interior insulation or exposed decking as an aesthetic design component of the building. Modified Cap sheet shall have both glass and polyester reinforcement and comply with ATSM 6162 or ASTM 6164 Type II Grade G. Basis of design – Firestone Premium FR UltraWhite carrying a twenty (20) year warranty. Fleece backed TPO basis of design shall be Firestone Platinum UltraPly TPO XR 135 carrying a thirty (30) year warranty.

D. Mechanically attached single ply roofing is acceptable in re-roofing projects that cover only one layer of an existing asphalt based roof membrane on a (non-aesthetic) metal deck pending pre-approval by Georgia Tech Facilities - Design & Construction. Thermal scans and remediation of all existing wet or damaged areas is required.

E. Warranty: Specify that the manufacturer must provide a thirty (30) year “no dollar limit (NDL)” warranty for the installed roofing system upon completion of manufacturer’s printed warranty procedures by the installing contractor. Warranty shall include unlimited coverage for accidental and incidental puncture, is not limited to temperature or U.V. exposure and includes membranes, edge metals and copings, flashings, insulations, attachment products and workmanship to install all of the system including workmanship regardless of applicator’s adherence to manufacturer’s details and specifications.

F. Insulation Board: Polyisocyanurate insulation. The manufacturer of the roofing system must also supply the insulation and include the insulation in the warranty. Cover boards are required in all modified roofing systems and in adhered, non-fleece backed applications. The minimum acceptable density of the cover board is 120 psi and the cover board must be supplied by, and included in the warranty of, the roofing system manufacturer. Basis of design: ½” IsoGard HD by Firestone Building Products and/or ¼” Georgia Pacific DensDeck Prime.
G. Stone, precast concrete or metal coping systems require a complete flashing system protecting the wall beneath them. Flash the roof side of parapet walls full height.

H. Roof mounted equipment should comply with recommended details of the National Roofing Contractors Association “Handbook of Accepted Roofing Knowledge”. Equipment shall be installed in a manner as to comply with, and not void, the roofing manufacturer’s warranty requirements. Roofs with consideration for planned installations of garden roofing or photovoltaic roofing within 7 years shall be installed as to accept those installations without voiding the roofing warranty. Basis of design: Firestone Red Shield EnviroReady Roofing Warranty.

I. Fume hood fans, motor starters and other roof mounted equipment should be installed on fully flashed raised curbs without the use of pitch pans. When roof mounted equipment cannot be set on curbs, allow 18 inches clearance minimum to facilitate repairs and reroofing. Insulated lines shall always come through a hood or a sleeve. Avoid the use of pitch pans.

J. Where the existing stone or precast concrete is to remain for aesthetic (architectural) compliance, water-proofing is acceptable with a solvent-free, fleece-reinforced and liquid-applied waterproofing system, based on polyurethane resin. The recommended product is Kemper 2K PUR non-VOC system.

K. All roof hatches (new or existing) shall incorporate safety rail systems and shall be installed at time of roofing or re-roofing by the installing roofing contractor. Basis of design: SafePro.

L. All new roof systems shall be include a plaque that identifies the roof system manufacturer for warranty information including company name, street address, warranty email address and telephone number. The plaque shall encourage the building manager to contact the roof system manufacturer upon discovery of roof problems to meet warranty notification requirements. (Typically, the roof system manufacturer will contact the roof installer with a work order for repairs.) The length of the warranty shall be expressed in years and start/end date. The installing contractor’s company name, street address, and telephone number shall be identified. The plaque shall be .080 GA aluminum sheet with UV Fade-Resistant Ink. Provide one placard (full size- approx. 16” x 16”) for exterior mounting near roof hatch and one half size version for mounting inside roof hatch on curb.

M. For projects in the Historic District where the existing roofing is slate, an acceptable alternative is CertainTeed Grand Manor Shangle (or equal) fiberglass asphalt shingles. Color to be either Colonial Slate, Gatehouse Slate or Stonegate Gray, whichever best accommodates the project palette.

N. Use roofing materials with a solar reflectance index (SRI) equal to or greater than 78 for roofs with a slope less than or equal to 2:12 and 29 for roofs with a slope greater than 2:12 for 75% of the roof. Tan membrane may be used where aesthetics deem it necessary. (Prior approval from Georgia Tech Facilities- Design & Construction is required for membrane installations that are not white in color.) Alternatively, install a vegetative roof that covers 50% or more of the roof area and is included in the roofing system manufacturer’s warranty, or a combination of the two.

O. See Section 072100 for thermal protection requirements.

END OF SECTION
081000 Doors

1.01 GENERAL

A. Doors and door hardware should be considered as a system and are to provide security and comply with life safety and ADA requirements.
 1. All exterior doors to have electric strikes, and the main entrances doors to have card readers. All strikes shall be in the locked mode during a power failure. All doors equipped with card readers shall be programmed to be unlocked during business hours from 7:00 AM to 6:00 PM, and locked all other times. For electric strike and card reader specifications see Section 16740 of the Engineering Design Standards of this manual. Review function of all building entrance doors for security, accessibility code and life safety application. All exterior doors shall also be equipped with fire exit hardware as required by the Building Code. Under no cases shall magnetic holding devices be used.

B. Building perimeter security access costs are incorporated and funded centrally within any facility construction budget or remodeling budget as appropriate for programs/units to be housed in the facility. Some systems may be zoned as necessary for end users.

C. Review and verify all lock function types with Facilities Office. In general, provide office lock function for offices and laboratories, classroom lock function for classrooms and storeroom lock function for custodial, data, mechanical and electrical rooms.

D. All building entrance doors to close against a full-length jamb at the strike. Double doors to have a center post mullion. Doors in gang sets are preferred and should swing in parallel. Provide well designed, strong metal pull handles for exterior entrance doors. Do not provide lever handles at entrance doors as they are prone to sagging and are subject to abuse and vandalism.

E. Aluminum entrance doors such as Kawneer 500 Series Doors or equal must have 5 inch styles (minimum) to receive door mounted closer. Rails containing strikes that adjoin sidelights must be horizontally braced with an intermediate horizontal style. Width should be scaled according to height.

F. Doors to receive electric strikes and card readers to be pre-wired from strike/reader to ceiling plenum at each public entrance door group. Provide complete card reader system when required in program.

G. Wood corridor exit doors to be fitted with half mortise hinges to sustain heavy use.

H. Door sealing gaskets are required on mechanical room doors opening off of public corridors.

I. Stair doors leading to roofs are to be secured. Provide double cylinder deadbolt locks. Code variances may be a consideration especially in cases of buildings exceeding three stories. Consider code safety, building security and restricted access to roof areas.

J. Wood doors to receive transparent or solid stain grade finish are preferred to be red or white oak with plain sliced veneers. This assures that matching doors will be available for alterations. Premium Birch and Maple are acceptable stain grade veneers.

K. Primary entrance doors should be greater than 36 inches wide up to 42 inches but not greater than 8’ - 0” tall. Interior door sizes are typically 3’ - 0” x 7’ - 0” or match existing building standard. Interior door heights over 8 ft. are discouraged.

L. Laboratory door entrances require specific design criteria, and must be reviewed and approved by the Office of Facilities. A single door of width greater than 36 inches is preferred to paired or unequal paired doors.
M. See Section 072100 for thermal protection requirements.

N. See Section 015721 for Indoor Air Quality requirements.

O. In order to ensure compatibility of the existing campus-wide electronic door control system, all new entrance doors shall be configured to that system. Coordinate requirements and installation with the Office of Facilities.

END OF SECTION
085000 Windows

1.01 GENERAL

A. Consult with Office of Facilities regarding window design and specification. Vision glass with Low-E coating is preferred. Exterior wall offices should have operable windows to comply with 2010 ADA standards, chapter 2 – section 229, or a mix of fixed and operable panels. Laboratory windows are normally fixed. Double hung, hopper and casement operating windows are acceptable.

B. To complement the building design, metal windows may be finished with baked on enamel paint or other durable coating system.

C. See Section 072100 for thermal protection requirements.

END OF SECTION
087000 Door Hardware

1.01 GENERAL:
A. Hardware to comply with 2010 ADA Standards, chapter 3 – section 309.4 and Georgia Accessibility Code.
B. Mortise locksets to have all metal components.
C. Hardware finish to be US 32D Satin Stainless Steel or US 4 Brass for traditional jobs. Other finishes require prior approval. Renovation work to match existing building standard, except upgrade to ADA standards.
D. Cylinders for all locks to be equal to Best 1E74 X PAT as provided by lock hardware manufacturer. Cylinders for office, classroom and laboratory doors must accept Best patented 7-pin cores, the standard established by the Georgia Tech Facilities Lockshop. Cylinders for custodial, data, mechanical and electrical rooms must accept Best standard cores.
E. Best Access Systems to develop the initial key schedule in coordination with the Georgia Tech Facilities Lockshop and building occupant representative, and give the final key schedule to the Lockshop.
F. Best Access Systems to cut keys, inscribe each key and permanent core with code of lock that identifies cylinder manufacturer’s key symbol, and inscribe each key with sequential key number and the notation A “DO NOT DUPLICATE.” Provide 3 keys per lock and turn over all keys, permanent cores, and permanent core control keys to the Lockshop.
G. For renovations, the Lockshop will install a maximum of five permanent cores. For more than five and for new construction, Best Access Systems will install the permanent cores.
H. Exit hardware to be equivalent to Von Duprin, series 99, Dorma series 9000 or Precision series 1100. Surface mount rim set devices latching into center post mullion. Avoid surface or flush bolts on double doors. Renovation work to match manufacturer of existing building standard.
I. Center post mullion to be equivalent to Von Duprin with stabilizer. Where removable Mullions are used, provide locks.
J. All entrance doors to have a continuous hinge with matching finish and color.
K. Door closers to be equivalent to LCN #4041, Ryobi # D-3550 or D-3551 or Dorma # 8900. Mount closers on the door, not on the frame. Aluminum entrance doors to be wide stile to receive the closer. Closers for wood doors must be through-bolted.
L. For doors required to be accessible to the disabled, provide power operators by LCN, Dor-O-Matic or Horton. Automatic and power-assisted doors to comply with 2010 ADA standards, chapter 4 – section 404:
 1. Full-powered automatic doors to comply with ANSI/BHMA A156.10.
 2. Low-energy and power-assisted doors to comply with ANSI/BHMA A156.19 (1997 or 2002 editions).
M. Contractor is to save all loose hardware parts and return these to Lockshop at project closeout.

END OF SECTION
092000 Gypsum Board Assemblies

1.01 GENERAL:

A. Interior Wall Partitions: Specify wall types on drawings to be 20 gage metals studs 3 5/8” o.c. or at 16” o.c. with 5/8” gypsum board both sides. The gage of metal on noted drawings must supersede ASTM c 754 for metal gage criteria. Specify the maximum deflection criterial to be L/240 at 5 psi.

B. Interior Wall Partitions – Acceptable: 25 gage metal studs 3 5/8” at 16” o.c. with 5/8” gypsum board both sides.

C. Wall Blocking: 20 gage Metal strap across face of metal studs with detail elevations to dimension locations. Wood blocking using solid FR lumber as well as FR plywood is also acceptable.

D. Gypsum walls enclosing a CMU or solid exterior wall surface should be detailed as framed construction, not furring, using 3 5/8” metal studs, to facilitate power, data communication and future rewiring. Brace studs to primary wall structure for stiffness. Detail concrete column enclosures to accommodate power and data communications systems.

E. In new construction, extend room partitions at minimum 6” above the reference ceiling line. Stud framing extended to structure is usually appropriate for stability. Provide sound insulation batts for sound control within walls around offices, conference rooms, rest rooms and all sound sensitive areas.

F. Renovations with infill walls of limited scope may allow for the grid to remain and new walls to extend to the underside of the grid. In these examples, trip the top edge of gypsum board partition with ceiling system “L” trim, white finish.

G. Design and specify wall types to comply with the International Building Code (IBC) NFPA and UL Fire Resistance Directory. Specify applicable ASTM, Gypsum Association requirements to the best practices and these guidelines.

END OF SECTION
094000 Ceilings

1.01 ACOUSTICAL CEILINGS

A. Lay-in Acoustical Tile Ceiling System

1. Renovation Work: New acoustical tile ceiling systems installed in existing buildings shall match adjacent acoustical tile ceiling system.

2. Suspension Systems: Standard suspension is 24” x 24” x 15/16” wide intermediate duty standard white finish. In new building construction a 24” x 24” x 9/16” wide intermediate duty standard white finish may be used.

3. Ceiling Tile: Standard ceiling tile shall be 24” x 24” x 3/4” thick, white tegular edge design equal to Armstrong Ultima.

4. Special Conditions: If higher NRC and CAC requirements are required, review ceiling tile options with Design & Construction.

B. General Guidelines

1. Do not specify concealed grid systems or similar products that are difficult to access.

2. For unconditioned spaces use hot dipped galvanized or aluminum grid suspension systems. Ceiling tile to be equal to Armstrong Fine Fissured Ceramaguard with hold down clips.

3. Provide grid starting points to establish ceiling tile layout.

4. Provide dimensions for light fixtures and other critical ceiling components not centered on the ceiling tile in both directions.

END OF SECTION
096000 Flooring

1.01 GENERAL:

A. Flooring to comply with 2010 ADA standards, chapter 3.

B. Corridors, offices and classrooms to be finished with the following carpet, which should comply with the VOC standards in Section 015721 and 2010 ADA standards, chapter 3 – Section 302.2. A palette of materials must be presented to the campus interior designer before presenting to the client.

1. Broadloom Carpet Products:
 a. Level loop or multi-level loop
 b. Solution-dyed nylon fiber type 6 or 6.6 is preferred
 c. Install carpet direct glue down

2. Carpet Tile Products:
 a. Level loop or multi-level loop
 b. Solution-dyed nylon fiber type 6 or 6.6 is preferred
 c. Releaseable glue system should be specified. Direct glue down not acceptable.

B. Rubber wall base to be continuous roll 4” cove base or straight base is preferred. Selection must be approved by the campus interior designer in the Office of Facilities.

C. Transition strips to be rubber. Do not specify metal.

D. Kitchens and wet utility (custodial) areas to be finished with quarry tile, heavy duty seamless flooring or high performance architectural coating (epoxy resin).

E. Mechanical, electrical and data communication rooms to be finished with high performance architectural coating, and may be a lower cost alternative for some wet utility areas where quarry tile flooring is specified.

F. Toilet and rest rooms to be finished with porcelain or ceramic tile on the floor, base and full height on wet walls (showers, etc.). Provide one floor drain in each room.

G. Laboratories to be finished with heavy duty high quality seamless flooring, integral base is preferred if applicable. Base to be continuous roll 4” cove base.

H. Dry utility areas (closets, store rooms, file rooms, break room areas, etc.) to be finished with vinyl composition tile. Base to be continuous roll 4” cove base.

I. Hard flooring systems (such as terrazzo) or high quality seamless flooring may be considered for main lobbies, atriums or where appropriate. Prior approval by the Office of Facilities is required.

J. Stairs, including fire exit stairs, may be finished with premium grade rubber treads. Compatible sheet rubber flooring may be used on landings. Risers may be painted. Product should be easily maintained with a dry cloth/mop.

K. Raised computer room access floors must be clean and dust free under the access floor system. Specify a clear concrete sealer on concrete floors under access floors.

L. See Section 015721 for VOC requirements.

END OF SECTION
096900 Access Flooring

1.01 GENERAL

A. Design Loads
 1. Concentrated Load: 1250 lbs.
 2. Uniform Load: 300 lbs.

B. Rolling Loads:
 1. 10 passes: 1000 lbs.
 2. 100 passes 800 lbs.

C. Permanent deflection: 0.010" at design load.

D. System
 1. Floor panels:
 a. 24" by 24" fully welded steel panels with die formed domes/embossments (60 count minimum) and filled with concrete.
 b. Edge trim shall top set rigid vinyl trim mechanically locked and glued to the panel top.
 c. Panel covering: High Pressure Laminate (HPL), Grade HW, 1/16" thick.
 2. Pedestals:
 a. Welded steel with die-formed steel or aluminum cap, designed to receive bolted stringers.
 b. Adjustability: Vertically adjustable pedestals, adjustment range of 2" minimum. Provide vibration proof mechanism for making and holding fine adjustments in height
 c. Base: Steel or aluminum base plate providing minimum 16 sq. in. bearing surface.
 d. Pedestal adhesive: Manufacturer's standard product.
 3. Stringers:
 a. Provide bolted stringers utilizing four bolts per pedestal
 b. Modular galvanized steel system with 4'-0" stringers.
 c. Stringers to be set in basket weave pattern.
 d. Stringers shall be capable of supporting a 550 lb. point load at center span with a permanent deflection of no more than 0.010".
 4. Perforated panels: Load-bearing, perforated panels, meeting design requirements
 a. No less than 25% free area for air flow
 5. Accessories:
 a. Ramps/Stair Units: Access flooring manufacturer's standard components intended for use with the access floor system specified.

c. Fascia Assembly: Access flooring manufacturer’s standard, designed so that open areas of the access floor system are enclosed.

d. Cutouts: Panel manufacturer's standard trim

e. Panel lifting device: Provide one (1) suction cup type device for Owner's use.

6. Fabrication

1. Acceptable tolerances:
 a) Panel flatness: ±0.020" in diagonal measurement.
 b) Panel length: ±0.020".
 c) Panel squareness: ±0.020" in length.

END OF SECTION
099000 Paints and Coatings

1.01 GENERAL:

A. The coating for all exterior metal for Georgia Tech buildings (window frames, door frames, storefront framing, curtain wall framing, coping, gutters, down spouts, etc.) to be equal to Sherwin-Williams/Duron Industrial Coating, Satin Bronzetone color.

B. All paint color selections to be reviewed and approved by the Office of Facilities. Limit the number of different colors to facilitate future maintenance.

C. Walls to have light value colors and have a latex eggshell or satin finish. Flat finishes are discouraged, particularly in high traffic areas. Special coating systems (Zolatone, etc.) are not preferred and will require prior approval from the Office of Facilities.

D. Special coating systems for high traffic walls is preferred over vinyl wall covering.

E. Metal and wood to be finished with alkyd or latex satin enamel.

F. Per the Building Code requirements, all wall covering to be Type II fabrics and must meet all smoke and flame speed requirements.

G. All paints and coatings shall comply with the VOC requirements set forth in Section 015721.

END OF SECTION
101100 Visual Display Boards

1.01 VISUAL DISPLAY BOARDS:

A. Material – PolyVision’s e³ environmental ceramicsteel with Forever Warranty™.
 1. Forever Warranty warrants ceramicsteel surfaces for as long as they are installed and in use, or forever, whichever occurs first.
 2. Certified Cradle to CradleSM Silver certification, a global eco-effective designation, awarded by McDonough Braungart Design Chemistry (MBDC); and SCS Indoor Advantage Gold™ certification, stringent indoor air quality standards of Scientific Certification Systems.
 3. Writing surface: e³ environmental ceramicsteel 99% recyclable content.

B. Acceptable manufacturers:
 1. Steelecase, Inc.
 2. Substitutions requests are to be submitted to the Georgia Tech Facilities Management Design and Construction office for approval.

END OF SECTION
102113 Toilet Partitions

1.01 TOILET PARTITIONS:
 A. Material - High-density Polyethylene (HDPE), 1" minimum in thickness.
 B. Style - Floor mounted overhead braced.
 C. Acceptable manufacturers:
 1. Santana Plastic Products
 2. Global Products, Inc.
 3. Comtec Industries
 4. Capitol Partitions, Inc.

END OF SECTION
102116 Shower and Dressing Compartments

1.01 SHOWER AND DRESSING COMPARTMENTS

A. Comply with the 2010 ADA standards, chapter 6 – section 608

B. Provide shower and changing facilities in the building or within 200 yards of the building entrance for .05% of FTE

END OF SECTION
102813 Toilet Accessories

1.01 TOILET ACCESSORIES

A. All toilet accessories including soap dispensers, paper towel dispensers, toilet seat cover dispensers and toilet tissue dispensers will be provided by Georgia Tech Custodial Services and space for installation shall be provided to comply with 2010 ADA standards, chapter 3 – section 309.

END OF SECTION
104100 Interior Signage

1.00 GENERAL

1.01 SECTION INCLUDES

A. Interior integrated modular signage system for directional, control, and informational signage.

1.02 RELATED SECTIONS

A. Section 03 30 00 - Cast-in-Place Concrete.
B. Section 04 22 23.29 - Split-Face Concrete Unit Masonry.
C. Section 08 11 13.16 - Custom Hollow Metal Doors and Frames.
D. Section 08 14 23.16 - Plastic-Laminate-Faced Wood Doors.
E. Section 09 21 16.23 - Gypsum Board Shaft Wall Assemblies.
F. Section 09 51 23 - Acoustical Tile Ceilings.
G. Section 09 90 00 - Painting and Coating.
H. Section 09 96 63 - Textured Plastic Coatings.

1.03 REFERENCES

1.04 DEFINITIONS

A. Terms:

1. Braille: Grade 2 Braille including 189 part-word or whole word contractions in addition to Grade 1 Braille 63 characters. Tactile is required whenever braille is required.

2. Non-tactile: Letters and numbers on signs with width-to-height ratio between 3:5 and 1:1 and stroke width ratio between 1:5 and 1:10 using upper case "X" to calculate ratios. Use type styles with medium weight; upper and lower case lettering are permitted; serif typestyles are permitted.

3. Symbols: Symbol itself is not required to be tactile but equivalent verbal description is required both in tactile letters and braille.

4. Tactile: 1/32 inch (0.80 mm) raised capital letters without serifs at least 5/8 inch (16 mm) height and not more than 2 inches (51 mm) height based on upper case "X". Braille is required whenever tactile is required.

1.05 SYSTEM DESCRIPTION

A. Signage under this section is intended to include items for identification, direction, control, and information of building where installed as complete integrated system from a single manufacturer.

B. ADA design requirements:

1. Signage requiring tactile graphics:
 a. Wall mounted signs designating permanent rooms and spaces such as, room
numbers and restroom, department, office, and fire exit identifications.

b. Individually applied characters are strictly prohibited.

2. Signage not requiring tactile graphics but which are required to comply to other ADA requirements include signs providing direction to or information about function of space such as, directional signs (signs with arrow), informational signs (operating hours, policies, etc.), regulatory signs (no smoking, do not enter), and ceiling and projected wall mount signs.

C. Comply with 2010 ADA standards, chapter 7-section 703.

1. Tactile graphics signs mounting requirements:
 a. Single doors: Mount 60 inches (1524 mm) to sign centerline above finish floor and on wall adjacent to latch side of door.
 b. Openings: Mount 60 inches (1524 mm) to sign centerline above finish floor adjacent opening.
 c. No wall space adjacent latch side of door, opening, or double doors: Mount 60 inches (1524 mm) to sign centerline above finish floor on nearest adjacent wall.

1.06 SUBMITTALS

A. Submit under provisions of Section 01 30 00 - Administrative Requirements.

B. Product Data: Manufacturer's data sheets on each product to be used, including:
 1. Manufacturer's product literature indicating units and designs selected.
 2. Evidence of manufacturer's computerized data retrieval program for tracking of project for sign typography, message strip requirements and other pertinent data from schedule input to final computerized typography on finished product.
 3. Preparation instructions and recommendations.
 4. Storage and handling requirements and recommendations.
 5. Installation methods.

C. Samples: One full size sign sample illustrating the design, construction, colors, typestyles, mounting method and other details as specified. Provide sample in small size sign.

D. Shop Drawings:
 1. Indicate materials, sizes, configurations, and applicable substrate mountings.
 2. Typography sample for message strips and headers copy.
 3. Artwork for special graphics.
 4. Artwork for special headers.

E. Signage Schedule: Complete with location of each sign and the required copy/text.

F. Sign Program Maintenance Plan:
 1. Manufacturer shall provide details of software and system of pre-perforated and color coated paper sign inserts allowing client to update and maintain signage graphics in-house.
 2. Manufacturer shall provide details of an Online Reordering & Maintenance Application whereby the client can submit sign reorders online and store relevant project information
such as sign type drawings, message schedules and product instructions.

G. Contract close out:
 1. Furnish appropriate checklist for aiding in reordering after Date of Substantial Completion. Maintain computer schedule program for five years for ordering new signage required by Owner.
 2. Maintenance data and cleaning requirements for exterior surfaces.
 3. Furnish instructions or one complete software package in Owner selected format for PC type computer for updating signs inserts by Owner.

1.07 QUALITY ASSURANCE

A. Manufacturer Qualifications:
 1. Work required under this section from manufacturer regularly engaged in work of this type and scope for a minimum of 5 years.
 2. Maintain computer link between schedule input and computerized typography production.

B. Installer Qualifications: Trained and authorized by manufacturer for installations of required scope and product.

C. Mock-Up: Provide a mock-up for evaluation of surface preparation techniques and application workmanship.
 1. Finish areas designated by Architect.
 2. Do not proceed with remaining work until workmanship, graphics, and installation are approved by Architect.
 3. Refinish mock-up as required to produce acceptable work.

1.08 DELIVERY, STORAGE, AND HANDLING

A. Package signs to prevent damage during shipment, handling, storage and installation. Products are to remain in their original packaging (unless otherwise specified) until removal is necessary for installation.

B. If installation site is not ready for signage upon delivery, store signs in a dry, air-conditioned environment.

C. Handle signage in accordance with manufacturer's instructions.

D. Store and dispose of solvent-based materials, and materials used with solvent-based materials, in accordance with requirements of local authorities having jurisdiction.

1.09 PROJECT CONDITIONS

A. Maintain environmental conditions (temperature, humidity, and ventilation) within limits recommended by manufacturer for optimum results. Do not install products under environmental conditions outside manufacturer's absolute limits.

1.10 SEQUENCING AND SCHEDULING

A. Schedule system installation after room finishes and fixtures have been completed.

PART 2

2.01 SYSTEM REQUIREMENTS
A. General:
1. Sign system shall feature modular solutions for all required sign types, including but not limited to wall mounted personnel signs, work station personnel signs, primary room identification, directories, directional, overhead signs, projection wall signs, free standing signs, restroom signs, regulatory and information signs, stair signs and changeable slide conference room signs.
2. Signs within the system shall feature the same family of components and convey a uniform look throughout.

B. Features:
1. Reproducibility: Sign components and colors shall allow for easy reproduction of future signage without requiring the manufacture of custom parts in order to match and maintain the building standard.
2. Updatability: Signs shall allow for easy updating of message inserts without the need to replace the entire sign assembly. System shall offer a solution for easy in-house updating of laser printed sign inserts for all sign types, including personnel signs, directories and directional signs.
3. Mounting: Signs shall accommodate installation via fully concealed mechanical fasteners.

C. Graphics: As selected from manufacturer's standard

D. Typography: As selected from Georgia Tech approved standards.

E. Colors and Finishes: As selected from manufacturer's standards.
1. Comply with 200 ADA standards, Chapter 7 – section 703, Sign system shall comply with all current and applicable ADA regulations, including requirements regarding which sign types require Braille/tactile features, character heights, color contrast and installation locations and mounting heights within the facility.

F. Materials and Construction:
1. Frames/Holders: Aluminum extrusions shall contain a minimum of 50% post-consumer recycled content and shall be extruded in the USA. Modular sign holders shall accommodate any type of flexible insert material up to .095 inch (2.4 mm) thick.
2. Braille / Tactile Components: PETG-backed photopolymer with raised characters and Braille of minimum 1/32 inch (0.8 mm) depth/thickness. Braille/tactile plaques shall contain a minimum of 40% recycled content.
3. Fasteners: Signs shall be able to accommodate fully concealed mechanical fasteners.

2.02 FABRICATION

A. Shop assembly:
1. Fabricate units to configurations indicated on reviewed shop drawings.
2. Provide copy on inserts, and covers required on reviewed shop drawings and in accord with ADA requirements.
3. Provide additional blank paper as specified.
4. Include instruction sheets for removal and replacement inserts and installation.

PART 3 EXECUTION

3.01 EXAMINATION
A. Do not begin installation until substrates have been properly prepared.
B. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.

3.02 PREPARATION
A. Clean surfaces thoroughly prior to installation.
B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

3.03 INSTALLATION
A. Install products in accordance with manufacturer's instructions, in locations and with mounting methods as specified in sign and location drawings.
B. Square, plumb and level all installed products.
C. Install all signage in accordance with 2010 ADA standards and any applicable state standards.
D. Upon completion of the work, sign installer shall remove any unused products, materials, packaging and debris from the installation site.

3.04 CLEANING
A. Clean all exposed surface not more than 48 hours prior to Date of Substantial Completion in accordance with manufacturer's written cleaning instructions.

3.05 PROTECTION
A. Protect installed products until completion of project.
B. Touch-up, repair or replace damaged products before Substantial Completion.

3.06 SIGN SCHEDULES
A. Refer to Signage Schedule and Drawings for sizes, locations, sign types, typestyle specifications, sign text/copy, layouts, and sign graphics.
B. Refer to NFPA 10 to determine the class, quantity and size of extinguishers required.
C. State Fire Marshall to review and approve class, size, and locations of fire extinguishers.
D. Cabinets to be fully recessed or semi-recessed in high finish areas.
E. Where access to or within a structure or an area is restricted because of secured openings or where immediate access is necessary for life-saving or fire-fighting purposes, the fire code official is authorized to require a key box to be installed in an approved location. The key box shall be of an approved type and shall contain keys to gain necessary access as required by the fire code official.

END OF SECTION
123000 Laboratory Casework

1.00 GENERAL:

A. Laboratory casework and fixtures to meet the guidelines of SEFA (Scientific Equipment and Furniture Association)

B. Casework

1. Quality reference manufacturers:
 a. Fischer-Hamilton
 b. Kewanee

C. Materials:

1. New buildings: Wood Cabinets

D. Renovations:

1. Typically wood (match the existing cabinets in the building)
2. Face species: White or red oak, plain sliced
3. Fume hood base cabinets:
 a. Material: Metal (Typically provide 2 base cabinets)
 b. One acid storage
 c. One flammable liquids storage vented through fume hood

E. Glass:

1. Framed sliding and swinging doors: 1/8" float glass.
2. Unframed sliding doors: 7/32" float glass.
3. Fume hoods or other hazardous locations: 7/32" laminated safety float glass
4. Glass shielding for fluorescent lights in fume hoods: tempered glass
5. Provide removable backs for base cabinet cupboards and sink base cabinets

F. Cabinet Hardware:

1. Pulls: loop style with 4" centers
2. Pulls are mounted horizontally on drawers and vertically on doors
3. Manufacture from brushed or anodized aluminum, or satin finish stainless steel

G. Hinges: Five knuckle institutional hinges, satin finish stainless steel

H. Drawer slides

1. Drawer slides shall be rated at 100 pounds minimum.
2. They shall consist of two steel epoxy coated sections providing a quiet, smooth operation on nylon rollers. Case channels shall maintain alignment of drawer.
3. Slides shall wrap under drawer sides for additional support.
4. The drawer shall be removable without the use of tools.
5. Provide 150 lb. capacity drawer slides for file drawers.
I. Catches:
 1. Provide roller catches on swinging doors.
 2. Spring-loaded polyethylene roller with a steel strike plate
 3. Provide elbow catches and strike plates on left hand doors of double door cases.
 4. Steel, spring type

J. Locks and Number Plates:
 1. Provide locks for cabinets only as required by individual project
 a. Provide National Lock Remove-A-Core 5-disc tumbler, heavy duty cylinder type.
 Exposed lock noses shall be dull nickel (satin) plated and stamped with identifying numbers.
 2. Provide number plates only as required by individual project
 b. Number plates shall be aluminum or stainless steel, screw attached type with satin finish and indented black lettering.

K. Lab Tops:
 1. Chemical labs:
 a. Epoxy resin, 1"t

L. Quality reference manufacturers:
 1. Epoxyn Products
 2. Durcon
 3. Color: Black

M. Biology & clinical labs:
 1. Trespa, 1"t
 2. Quality reference manufacturer: Trespa North America, Limited

N. Provide marine edge tops at sinks

O. Provide 4" tall matching side and back splashes

P. Lab Shelving
 1. Shelves: 1"t AA plywood Oak veneer with hardwood edge banding
 a. Typically make shelves 12" deep
 2. Standards: Unistrut P3300 channel, 1 5/8" X 7/8"
 3. Brackets: Unistrut P2491 through P2503
 a. Typically P2493 bracket 10"l
 b. Size brackets 2" less than shelf depth
 4. Screw shelves to standards
Q. Sinks:
1. The term sinks refers to all sinks, except cup sinks
2. Sinks: Under counter epoxy resin sinks with supports
3. Cup sinks: Polyolefin oval cup sink
4. Where dictated by the individual application, provide drop-in stainless steel sinks
5. Provide polyolefin outlets, tailpieces, traps, etc.
 a. Provide similar item in stainless steel when used with stainless steel sinks
6. Provide overflow accessory for sinks

R. Laboratory Pegboards: (Drainboards)
1. Provide pegboards at all sinks
2. Board: Epoxy resin board finished on face and edges. Where exposed, finish back with slightly different surface texture and bevel bottom edges.
3. Pegs: Polypropylene pegs in 4 3/4" (+/- ½") length, with glassware protector base. Base of pegs shall be two prong style for mechanical attachment. Do not bond pegs to board.
4. Drip Trough: Provide stainless steel drip trough with integral drain outlet that are the same width as the pegboards with which they are associated. Provide 36" (min) PVC draw hose.

S. Fixtures:
1. Manufacturer for quality reference: Watersaver
2. Sink faucets:
 a. Mixing valve swivel gooseneck with vacuum breaker
 b. Provide aerator and serrated tip for all faucets
3. Cup sink faucets:
 a. Single valve facet with fixed gooseneck and vacuum breaker
 b. Provide CW service at cup sinks
 c. Provide serrated tip for cup sink faucets
 a. Eye wash units:
 1) Provide pull down on or swivel on eye wash units
 2) Provide eye wash units at all sinks
 3) Hand held sprayer units are not acceptable as eye washes
 4) Provide one emergency shower per lab
 5) Finish: Provide chrome plated fixtures
6) Provide other materials and standard finish where by the nature of the service being delivered, such as deionized water, steel or brass fixtures are not acceptable

2.01 SERVICE FITTINGS AND ACCESSORIES

A. General: Service fittings to be metal.

1. Provide laboratory grade service fittings.

B. Provide removable screw-on type colored plastic discs with letter stamped on disc in contrasting color as scheduled below:

<table>
<thead>
<tr>
<th>Service</th>
<th>Disc/Letter Colors</th>
<th>Letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>Blue/White</td>
<td>Gas</td>
</tr>
<tr>
<td>Vacuum</td>
<td>Yellow/Black</td>
<td>Vac.</td>
</tr>
<tr>
<td>Compressed Air</td>
<td>Orange/White</td>
<td>C-Air</td>
</tr>
<tr>
<td>Cold Water</td>
<td>Green/White</td>
<td>CW</td>
</tr>
<tr>
<td>Hot Water</td>
<td>Red/White</td>
<td>HW</td>
</tr>
<tr>
<td>Steam</td>
<td>Black/White</td>
<td>Stm</td>
</tr>
<tr>
<td>Chilled Water</td>
<td>Brown/White</td>
<td>CH</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>White/Black</td>
<td>DW</td>
</tr>
</tbody>
</table>

1. Disc color for special services as determined by Owner.

C. Performance

1. Maximum Line Pressures:

<table>
<thead>
<tr>
<th>Service</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball Valve Cocks (Gas and Air)</td>
<td>75 PSI</td>
</tr>
<tr>
<td>Ground Key Cocks (Gas and Air)</td>
<td>40 PSI</td>
</tr>
<tr>
<td>Needle Point Cocks (Gas and Air)</td>
<td>65 PSI</td>
</tr>
<tr>
<td>Vacuum</td>
<td>28.5" Mercury</td>
</tr>
<tr>
<td>Hot and Cold Water</td>
<td>80 PSI</td>
</tr>
<tr>
<td>Steam</td>
<td>30 PSI</td>
</tr>
</tbody>
</table>

D. Electrical fixtures and fittings:

1. Pedestal type meeting the provisions of the current edition of the National Electric Code.

2. Materials: Heavy "lustrebrite" corrosion resistant aluminum alloy polished to a chrome like color.

E. Finishes

1. Provide factory finished casework and shelving.
2. Wood: Highly chemical-resistant modified acrylic urethane finish with built in U.V. blocker over stain of selected color. Finish must meet performance characteristics of TR-5, Section 1500, AWI Architectural Woodwork Quality Standards.

3. Metal: Highly chemical resistant electrostatically applied urethane powder coat, baked in controlled high temperature oven.
 a. Exterior and interior exposed surfaces: 1.5 mil average and 1.2 mil min.

4. Backs of cabinets and other surfaces not exposed to view: 1.2 mil average.

5. Liquid dipped, solvent based finishes are not acceptable.

6. Finish front and both sides of cabinets

7. All finishes, adhesives, and sealants must comply with the VOC requirements in Section 015721.

 END OF SECTION
124800 Rugs and Mats

1.01 GENERAL:

A. Comply with 2010 ADA Standards, Chapter 3 – section 302.
B. The preferred entrance mat to be equal to Collins and Aikman Triad Mat System and should be 10 feet long in the primary direction of travel
C. Prior approval by the Office of Facilities is required.

END OF SECTION
125000 Window Coverings

1.01 GENERAL:

A. Specify blinds equal to Levolor Monaco 1" mini-blind.

B. The preferred color #31, Polished Aluminum.

END OF SECTION
129313 Bicycle Racks

1.01 GENERAL

A. Provide secure bicycle racks and/or storage within 200 yards of the building entrance for 5% or more of building users, measured at peak periods.

B. See Georgia Tech Landscape Design Standards for design requirements http://www.facilities.gatech.edu/dc/standards/LANDSCAPE.pdf.

END OF SECTION
142000 Elevators

1.01 Code Compliance:

A. ASME A17.1
B. ADA / ADAG
C. Georgia Department of Labor

2.01 General Requirements:

A. Comply with Georgia Department of Labor laws that regulate elevators. Specify that Contractor is to pay all fees and to coordinate the inspection of the elevator system with the State Elevator Inspector. City of Atlanta is not involved in elevator regulation on the Georgia Tech Campus.

B. Provide automatic fireman’s recall system to meet the current elevator code. If one elevator is modernized or added to a building, all elevators need to have FEOK1 keys installed for Phase 1 and Phase 2 fire service.

C. Provide wiring for telephone communications. Provide ADA compliant GAI Tronics telephone unit and locate incorporated in car station. Georgia Tech Utilities Maintenance (404-385-6000) will provide model number and specification (see section 273013).

D. Coordinate floor name convention with approved Floor Plan Conventions, i.e. “GROUND FLOOR”.

E. Provide for administrative building key access to elevator equipment rooms. Program requirements will usually apply and restrict access to equipment rooms. Must be group 2 security by the Elevator Code.

F. Provide sump pump rated at 3000 GPH per elevator with flush mounted metal grate cover plate, 19 Ftc light from 2 fixtures in elevator pit and a fixed access ladder. Provide duplex GFIC utility outlet and single non GFIC outlet for sump pump. Light switch to be located at pit ladder so accessible prior to entering pit.

G. Provide soft start reduced voltage starting system for hydraulic elevators. Provide AC, VVVF on all new traction elevators and modernized geared machines. Provide DC/SCR drives on modernized gearless machines.

H. Provide Battery Lowering system for all hydraulic elevators on loss of power.

I. Provide Battery Drift function for all traction elevators on loss of power.

J. Size car capacity and door for research activities and building equipment. Consider C1 Class loading on service elevators on a case by case basis.

K. Provide vandal proof fixtures for pushbuttons on hall stations and lanterns and car stations.

L. Provide LED lighting for all push buttons and elevator cab light assemblies.

M. Provide vegetable oil for all new and modernized hydraulic elevators.

N. Provide steel hoist ropes for all traction elevators.

O. Provide full screen non-contact door detector on all elevators.

P. Direction arrow fixtures at all hall landings, incorporate position indicator on main fire recall floor.

Q. Locate hoistway access key switch in jamb at top and bottom floor as required or specified.
R. Provide three sets of neatly bound written information necessary for proper maintenance and adjustment for equipment of within 30 days following final acceptance. Final retention will be withheld until data is received by Purchaser and reviewed. Include the following as minimums:

1. Straight-line wiring diagrams of “as-installed” elevator circuits, with index of location and function of components. Provide one set reproducible master. Mount one set wiring diagrams on panels, racked, or similarly protected, in elevator machine room. Provide remaining set rolled and in a protective drawing tube. Maintain all drawing sets with addition of all subsequent changes. These diagrams are Purchaser’s property. A legend sheet shall be furnished with each set of drawings to provide the following information:

 a. Location on drawings, drawing sheet number and area, and location of all contacts.
 b. Location of apparatus, whether on controller or on car.

2. Name and symbol of each relay, switch, or other apparatus.
 a. Location on drawings, drawing sheet number and area, and location of all contacts.
 b. Location of apparatus, whether on controller or on car.

3. Written Maintenance Control Program (MCP) specifically designed for the equipment included under this contract. Include any unique or product specific procedures or methods required to inspect or test the equipment. In addition, identify weekly, bi-weekly, monthly, quarterly, and annual maintenance procedures, including statutory and other required equipment tests.

4. Printed instructions explaining all operating features.

5. Complete software documentation for all installed equipment.

6. Lubrication instructions, including recommended grade of lubricants.

7. Parts catalogs listing all replaceable parts including Contractor’s identifying numbers and ordering instructions.

8. Four sets of keys for all switches and control features properly tagged and marked.

9. Diagnostic test devices together with all supporting information necessary for interpretation of test data and troubleshooting of elevator system, and performance of routine safety tests.

S. The elevator installation shall be a design which can be maintained by any licensed elevator maintenance company employing journeymen mechanics, without the need to purchase or lease additional diagnostic devices, special tools, or instructions from the original equipment Manufacturer.

1. Provide onsite capability to diagnose faults to the level of individual circuit boards and individual discreet components for the solid state elevator controller.

2. Provide a separate, detachable device, or software as required to the Purchaser as part of this installation if the equipment for fault diagnosis is not completely self-contained within the controller. Such device shall be in possession of and become property of the Purchaser. The software or device shall be made available to the Customer in the case of misplacement or loss of the original.

3. Provide the tools or software for, service, repair and parts replacement.

4. Installed equipment not meeting this requirement shall be removed and replaced with conforming equipment at no cost to the Purchaser.

5. Provide upgrades and/or revisions of software during the progress of the work, warranty period and the life of the elevator.
T. Elevator Cab Interior Finishes: For renovations, the existing front return and transom shall be re-clad with #4 Finish Brushed Stainless Steel.
 b. Provide vertical mounted wall panels that are constructed of 3/4” thick marine grade plywood. Each panel section shall be faced #4 Brushed Stainless Steel Finish and framed in 1/16” thick stainless steel. Frame members shall be separated by 1/2” thick #8 Mirrored Stainless Steel metal reveals and fitted with 3-1/2” wide #8 Mirrored Stainless Steel metal metal plates at corners.
 c. Apply furniture steel (primed or finished steel) to shaft side of panels to prevent warping or other deformations.

Base:
 d. Provide a #8 Mirrored Stainless Steel finished metal base with a 1/4” wide continuous vent slot above the base to allow the proper amount of air to infiltrate the cab based on the CFM of the exhaust fan and car interior size.

 e. Prepare base to accept finished floor of tile or carpet as selected by the Owner.

Entrance Sill for renovations:
 f. Clean and polish existing car door entrance sill. Replace with new Aluminum Sill if existing is warped or damaged.

Car Door
 g. Cab Doors: Standard 1” thick, 14 gauge hollow metal flush construction, reinforced for power operation and insulated for sound deadening. Paint hatch side of doors black and face on cab side with 16 gauge #4 Brushed Stainless Steel. The door panels shall have no binder angles. All welds shall be continuous, ground smooth and invisible. Drill and reinforce doors for installation of door operator hardware, door protective device, door gibs, etc.

Lighting:
 h. Provide low voltage high efficiency recessed LED down lighting with finished reflector, trim and cover shields. Provide 6 lights minimum per cab. Ceiling panels will be mounted in #8 Mirrored Stainless Steel panels.

Flooring:
 i. Provide finish floor covering using carpet or a vinyl composition tile as selected by Owner.

Handrail:
j. Provide standard 1/2” x 2” polish #4 Stainless Steel flat-stock handrail on rear and side walls with top of rail located 32 inches above the finished floor.

k. Use three (3) points of attachment designed for interior access servicing with exterior support plates.

l. Provide standard 1/2” x 4” polish #4 Stainless Steel flat-stock bumper rail on rear and side walls with top of rail located 6 inches above the finished floor.

m. Use three (3) points of attachment designed for interior access servicing with exterior support plates.

END OF SECTION
221116 Plumbing Piping

1.01 General

A. Building domestic water supply lines shall have a pressure regulating device.

B. All underground hot and cold water supply (including all risers) shall be type “K” copper pipe. Domestic water piping above ground may be type “L”.

C. Where domestic water system provides intake water to other systems, these systems shall have a positive anti-back-flow device. Provide a backflow preventer for each make-up water supply as per the Georgia State Minimum Standard Plumbing Code. Main building service shall be separated from the city service by an RPZ type backflow preventer.

D. A cut-off valve is required on every branch that leads from a main or major piping system in the building. Cut-off valve shall be located where it can be easily reached and serviced.

E. In Chemistry or related buildings, main concealed drain lines should be chemical resistant. Under concrete slabs and through foundations, hub and spigot DURIRON should be used.

F. Lead for any drain lines is not acceptable.

G. For laboratory casework, chemical resistant joints, heat fusion polypropylene, PVDF or glass is acceptable. The compatibility of the selected materials should be reviewed with the chemicals and concentrations that are intend to be carried. Lead is unacceptable. For troughs, sinks, etc., in laboratory casework, chemical resistant polypropylene is preferred.

H. All outside spigots should have no-freeze@ valves. Outside spigots should be spaced every 200 feet and on all sides of buildings.

I. Valves should have removable seats and washers if at all possible, including those on laboratory casework.

J. Provide floor drains with trap primers in all mechanical rooms located to allow easy access for cleaning. Do not locate drains under any mechanical equipment.

K. Water supply lines and connection for fire service shall be separate from the domestic water supply and connections.

L. An instantaneous heat exchanger (steam/hot water) shall be used in dormitory application for domestic hot water in lieu of storage tank. Provide a recirculating pump.

M. In a large 24-hour facility that has its own chiller, consider heat recovery from the condenser side for preheating hot water.

N. When renovating existing sprinkler piping in a building, remove all existing exposed piping that will be abandoned, if any, and cap all underground piping that will be abandoned, if any.

O. When new piping is installed in a building with finished spaces, the piping shall be leak tested first with air at no greater than 40psig. Once passing the air test, a subsequent hydrostatic test shall be used to further validate the system. Hydrostatic testing shall be at 1 ½ times working pressure for at least four hours.

END OF SECTION
224000 Plumbing Fixtures

1.01 General

<table>
<thead>
<tr>
<th>BUILDING TYPE</th>
<th>TYPE of FIXTURE or EQUIPMENT</th>
<th>WATER USAGE (GALLONS/USE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic, Other research, Athletics, Non-residential</td>
<td>Public bathroom faucets</td>
<td>0.5 gpm aerator, sensor operated</td>
</tr>
<tr>
<td>Buildings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Dorm, residential, Academic, Other research,</td>
<td>Residential faucets</td>
<td>0.5 gpm aerator, sensor operated</td>
</tr>
<tr>
<td>Athletics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Café, Cafeteria, Large & Small Kitchens,</td>
<td>Kitchen faucets</td>
<td>2.2 gpm</td>
</tr>
<tr>
<td>Student Dorm, residential, Academic, Other Research,</td>
<td>Toilets</td>
<td>1.28 gallon per flush, sensor operated</td>
</tr>
<tr>
<td>Athletics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Dorm, Academic Other Research, Athletics</td>
<td>Urinals</td>
<td>0.125 gpf, sensor operated</td>
</tr>
<tr>
<td>Student Dorm, Residential, Academic Other Research,</td>
<td>Showerheads</td>
<td>1.0 gpm (need to specify building water pressure before ordering; tamper resistant, e.g., BriCor)</td>
</tr>
<tr>
<td>Athletics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Dorm, Residential, Academic Other Research,</td>
<td>Clothes Washing Machines</td>
<td>15 gals/load</td>
</tr>
<tr>
<td>Athletics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Dorm, Residential, Academic Other Research,</td>
<td>Dishwashers</td>
<td>4-8 gals/load</td>
</tr>
<tr>
<td>Athletics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Café, Cafeteria, large kitchen</td>
<td>Pre-rinse nozzles need to pass Food Service Tech Center</td>
<td>1.15 gpm (must be tested by FSTC)</td>
</tr>
<tr>
<td>certification (FSTC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Café, Cafeteria, large kitchen</td>
<td>Food Steamers need to pass Food Service Tech Center</td>
<td>Use recirculating steam to heat steamers, also called "boilerless steamers". Steamers must be tested by FSTC, use < 2 gals/hr</td>
</tr>
<tr>
<td>(FSTC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Café, Cafeteria, large kitchen, Ice machines</td>
<td>Café, Cafeteria, large kitchen Ice machines; need to pass</td>
<td>Once-through tap water cooling prohibited; Use re-circulating closed-loop chilled water or air</td>
</tr>
<tr>
<td></td>
<td>Food Service Tech Center certification (FSTC)</td>
<td></td>
</tr>
<tr>
<td>Café, Cafeteria, large kitchen</td>
<td>Commercial, industrial dishwashers</td>
<td>Maximum of 1 gallon per rack. Retrofit of nozzles to be efficient - Use Optirinse (Hobart) or comparable</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Academic, Other Research</td>
<td>House vacuum system: liquid ring (wet) vs. dry vacuum pumps</td>
<td>Use dry vacuum pumps</td>
</tr>
<tr>
<td>Academic, Other Research</td>
<td>Glass ware washers</td>
<td>Purchase efficient units, such as HAMO brand</td>
</tr>
<tr>
<td>Academic, Other Research</td>
<td>Lasers, electron microscopes, or other research equipment needing cooling</td>
<td>Use re-circulating closed-loop condenser water for cooling. Once-through tap or chilled water cooling prohibited.</td>
</tr>
<tr>
<td>Academic, Other Research</td>
<td>Autoclaves, sterilizers: without mizers vs. with mizers</td>
<td>Install water mizers. Quench water runs only when >140 F wash wastewater detected (typically <6 hrs per day). If available, use recycled water for quenching.</td>
</tr>
<tr>
<td>Academic, Other Research</td>
<td>Reverse Osmosis/water treatment system standard 50% efficiency vs.with reuse of reject water</td>
<td>Capture RO reject water for non-potable re-use. RO reject water could be used for non-potable uses, e.g., quenching, toilet flushing, sewer trap priming</td>
</tr>
</tbody>
</table>

END OF SECTION
224700 Drinking Fountains and Water Coolers

1.01.1 GENERAL

A. The basis of design for filtered bottle filling stations with bi-level ADA compliant design will be Elkay LZSTLBWSSP.

END OF SECTION
230000 MECHANICAL
230001 Mechanical General and Design

1.01 Mechanical Codes:

A. All mechanical installation shall be designed and installed in compliance with State of Georgia Construction Codes. Those Georgia Codes governing mechanical installations are:

1. Georgia State Minimum Standard Building Code
2. Georgia State Minimum Standard Gas Code
4. Georgia State Minimum Standard Mechanical Code
5. Georgia State Minimum Standard Energy Code
6. Georgia State Minimum Electrical Code
7. City of Atlanta, Water Bureau

A. Explicit reference to the date of the most recent edition of a code should be made in the project design criteria. Most current requirements can be found at:
http://www.dca.state.ga.us/development/constructioncodes/program/codes2.asp

B. Standards for design and installation of mechanical system components established by various societies, councils, and associations should be used for additional guidance. Among those to be considered are:

1. SMACNA
2. ASHRAE
3. American Council of Governmental Industrial Hygienist
4. ANSI
5. ASTM
6. N.F.P.A.

C. Design heating, ventilating, and air conditioning (HVAC) systems to meet the requirements of ASHRAE Standard 55-2010, Thermal Environmental Conditions for Human Occupancy. Agree to conduct a thermal comfort survey of building occupants within 6 to 18 months after occupancy. Agree to develop a plan of corrective action if the survey results indicate that more than 20% of occupants are dissatisfied with thermal comfort in the building.

D. Design HVAC systems to meet the requirements of ASHRAE 90.1 2010. Provide demand controlled ventilation strategies in compliance with current Energy Codes and for any space with an occupancy of 10 or more people.

E. The state of Georgia currently requires that buildings be designed in compliance with ASHRAE 90.1 2007. It is Georgia Tech’s desire to exceed these minimum requirements. As such, designers shall make every effort to comply with ASHRAE 90.1 2010. Consult with Georgia Tech Facilities Design and Construction where a waiver to such compliance is desired.
F. All mechanical system components shall be the manufacturers’ standard commercial product. A standard commercial product is a product that has been sold for a period of at least three years on the commercial market through advertisements, manufacturer’s catalogs or brochures, and represents the latest production models. The products shall have proven successful field experience which involved operation or use under conditions equivalent to those of the project on which they are applied for the same three year period.

G. Application: These criteria apply to all facilities administered by the Board of Regents regardless of size or origin of project and source of funds.

H. Design Responsibility: Responsibility for project design resides solely with the Board of Regents. The Construction and Office of Facilities or the Chancellor’s staff, supervises and administers project preparation for contracting as a service to the individual institutions.

I. Design Policy: The mechanical system will be considered an essential element of each building with adequate space allocated for it and in a manner that will permit the installation of a well-designed system capable of being operated and maintained with minimum expenditure of physical plant power.

1.02 SYSTEM EVALUATION

A. System designs shall be evaluated by the design team on the basis of total owning and operating cost over a twenty (20) year period, not energy or capital cost alone. Life Cycle Cost Analysis vs. construction cost shall be compared and presented to Georgia Tech for evaluation.

B. Simple systems requiring the least number of mechanical components and controls are preferred where possible if long term cost is affected minimally.

C. Optimum reliability, will determine the quality and number or components used.

D. Submission of owning and operating cost analysis by architect/engineer will be required at the 50 percent Design Review Period for approval by the Facilities Engineering Department. During review design should proceed.

1.03 EQUIPMENT

A. All Equipment will be new, be of the latest design and best quality available for the application, and be inspected prior to delivery to the job site to assure freedom from defects in workmanship and materials.

B. All equipment and products specified and installed will be standard items of production having not less than three (3) years’ proven successful field experience which involved operation or usage under conditions equivalent to those of the project on which they are applied.

C. All equipment will be applied and installed strictly in accordance with manufacturers’ recommendation.

2.01 ELECTRICAL CODES:

A. All electrical installations and design shall conform to the Edition of the National Electric Code currently adopted by the State of Georgia with Georgia Amendments.

B. All electrical installations and designs shall conform to the latest Georgia State Energy Code for Buildings.
4.01 EQUIPMENT EXCEPTIONS:

A. Requests for exceptions to these criteria shall be submitted to Georgia Tech’s Office of Facilities Engineering Department for approval. Upon approval, forward the request to the Vice-Chancellor, Construction & Plant Operations, Regents of the University System of Georgia, Atlanta, Georgia for assessment and decision.

B. Requests for exception shall include:

1. A detailed description of the alternative(s) proposed.
2. Full justification for its (their) use instead of the design designated by these criteria.
3. A list of its (their) benefits to the University System of Georgia with specific statements regarding improved performance, lower owning and operating cost, and greater reliability.
4. Exceptions will apply only to the specific project for which they are granted.

5.01 PIPING IDENTIFICATION SYSTEM:

A. Piping systems shall be identified clearly with fully descriptive identifiers or abbreviations as specified herein.

1. Materials for Color Identification:
 a. Plastic tape specified herein shall be 3M Scotch® Brand No. 471 vinyl tape, 5 mil thickness, of colors specified. Equal Texcel or Permacel tape is acceptable.
 b. All exposed piping shall be painted continuously under another Section of the design criteria the background colors specified hereinafter.
 c. All other piping shall have background colors specified hereinafter of 5" wide plastic tape.

2. Locations of Color Identification: Provide color identification in accordance with the schedule specified herein at the following locations:
 a. All exposed piping:
 1) Within 1' - 6" of each gate, globe, angle, or plug valve.
 2) Within 3' - 0" of each 90 degree elbow, connection to equipment or vessel, point where pipe enters shaft to upper floors, and point where pipe pierces outside wall.
 b. Above Suspended Ceilings:
 1) Within 1' - 6" of each valve or valve assembly.
 c. At tees, both main and branch shall be identified within 300" of tee.
 1) Within 3' - 0" of each 90 degree elbow.
 d. Piping Concealed in Cases or Shafts:
 1) Identify each pipe visible through access door panel.
 2) Flow Markings: Arrows showing the direction of flow should be painted on the piping near the location of each color identification.
B. Schedule of Piping Identification

<table>
<thead>
<tr>
<th>CLASSIFICATION</th>
<th>BACKGROUND COLOR</th>
<th>IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Water</td>
<td>Green</td>
<td>Domestic Cold Water DCW</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>Green</td>
<td>Domestic Hot Water DHW</td>
</tr>
<tr>
<td>Domestic Hot Water Return</td>
<td>Green</td>
<td>Domestic Hot Water Return DHWR</td>
</tr>
<tr>
<td>Equipment Drains</td>
<td>Green</td>
<td>None</td>
</tr>
<tr>
<td>High Pressure Steam</td>
<td>Yellow</td>
<td>High Pressure Steam HPS</td>
</tr>
<tr>
<td>Medium Pressure Steam</td>
<td>Yellow</td>
<td>Medium Pressure Steam MPS (note pressure in psi)</td>
</tr>
<tr>
<td>Pump Condensate Return</td>
<td>Yellow</td>
<td>Pump Condensate PC</td>
</tr>
<tr>
<td>Hot Water Supply – from Converter (Heating)</td>
<td>Yellow</td>
<td>Hot Water Supply HWS</td>
</tr>
<tr>
<td>Hot Water Return – from Converter (Heating)</td>
<td>Yellow</td>
<td>Hot Water Return HWR</td>
</tr>
<tr>
<td>Steam Vent, Steam Relief, Valve Discharge, etc.</td>
<td>Yellow</td>
<td>Steam Vent</td>
</tr>
<tr>
<td>Reduced Pressure Steam</td>
<td>Yellow</td>
<td>Steam</td>
</tr>
<tr>
<td>Chilled Water Supply</td>
<td>Blue</td>
<td>Chilled Water Supply</td>
</tr>
<tr>
<td>Chilled Water Return</td>
<td>Blue</td>
<td>Chilled Water Return</td>
</tr>
</tbody>
</table>

1. Furnish Color Identification Schedule framed under glass.
6.01 WATER TREATMENT:
A. Georgia Tech has two professional service contracts in effect for water treatment. One for the Atlanta campus, covers the central steam plant, steam distribution system, central cooling plant and cooling towers, and the chilled water distribution system. The second contract provides service for all local water treatment, i.e., building hot water circulating systems, small cooling tower serving individual buildings, local chilled water circulating systems, and individual building boilers.
B. There is no domestic water treatment.
C. The Office of Facilities will supply you with the names of those currently performing these services. The water treatment consultant will provide you with all information for designing the water treatment system so that it will be consistent with the established program. Water treatment is required for piping installed in new buildings prior to connection to Georgia Tech services. The Commissioning Agent shall validate water treatment is performed as part of the flush out and prior to campus connections.

6.02 CAMPUS STEAM DISTRIBUTION SYSTEM:
A. Georgia Tech has a steam distribution system. The system and design requirements are covered in Section 232213. The campus steam distribution system shall be used for building heating and other requirements for heating for the area of campus south and east of Ferst Drive. The buildings north and west of Ferst Drive will be served by natural gas and will generate their own heat. Georgia Tech owns its own natural gas distribution system North and West of Ferst Dr. The contractor shall not turn on (start up or engage) the campus steam or natural gas distribution system without the assistance of the Office of Facilities.

6.03 CAMPUS CHILLED WATER SYSTEM:
A. Georgia Tech has a chilled water distribution system. The system design requirements are covered in Section 231113. The contractor shall not turn on (start up or engage) the campus chilled water distribution system without the supervision and assistance of the Office of Facilities. The project will be assessed a chilled water capacity fee of $950 per ton of cooling.

6.04 CAMPUS ELECTRICAL DISTRIBUTION SYSTEM:
A. The contractor shall not make connection to the campus electrical distribution system.

6.05 SANITARY SYSTEMS:
A. All sewage systems must comply with the standards established by the City of Atlanta.
B. Catch basins for street drainage must comply with standards established by the Georgia Transportation Department and the City of Atlanta.
C. Storm and sanitary service shall be separate for all Georgia Tech projects to the point of tie in into the City of Atlanta system.

6.06 CAMPUS WATER SYSTEM:
B. The campus is served by the City of Atlanta. All facility water service connection must comply to the codes and standards of the City of Atlanta.
6.07 NATURAL GAS:

A. The majority of campus is served by the Atlanta Gas Light Company. All the major buildings north of Ferst Drive west to 6th Street are served by Georgia Tech Natural Gas lines. All facility natural service connections must comply with the standards of Atlanta Gas Light and the codes and standards of the City of Atlanta. Provide full bypass around the gas meter with test ports to enable validation of the meter. Where meter provides whole building consumption, provide RS485 connectivity to the meter for interface with the Campus Ion Metering System.

END OF SECTION
230002 HVAC- General and Design

1.01 GENERAL:
A. In general, the implication of the technical terms used in this section the criteria correspond with the definitions provided in the ASHRAE Handbook of Fundamentals.

2.01 DESIGN CONDITIONS:
A. The values provided in Chapter 14 of the ASHRAE Handbook of Fundamentals 2013 or as published in ASHRAE 90.1 2010 shall be used for the Georgia location closest to the project under design. Load calculation shall be in conformance with ASHRAE 183-2007 as required by the energy code. Central station base building systems shall be sized to accommodate 15% growth.

3.01 RE-CIRCULATED AIR SYSTEMS, ATLANTA GEORGIA:
A. Summer: Outside – 94.0°F dry bulb, 74.3°F wet bulb.
B. Winter: Outside - 10°F dry bulb, 10 grains/lb. Dry air for calculating humidification.

4.01 100% OUTSIDE AIR SYSTEMS:
A. Summer: outside – 94.0°F dry bulb, 74.3°F wet bulb.
B. Winter: Outside - 10°F dry bulb, 10 grains/lb. Dry air for calculating humidification.
C. Outside design conditions used shall be indicated in the contract documents for record purposes only.

5.01 INDOOR DESIGN TEMPERATURE
A. See 230003 Space Conditions.

6.01 EXCEPTIONS:
A. Only process cooling requirements may be exempted from design temperatures, humidification and dehumidification requirements.

7.01 HUMIDIFICATION:
A. May be provided, but shall be limited to no less than 30% relative humidity in the heating season. Do not use direct humidification with campus steam-generate sanitary steam for humidification. Provide humidification where required by research program requirements and as needed to meet ASHRAE 55. Provide a means for makeup softening on humidification systems. Humidification needs shall be considered where there is a potential for electrical arcing.

8.01 ENERGY ANALYSIS
B. Comparison of annual energy usage of the ASHRAE Standard 90.1 Appendix G and/or a proposed alternative building with the system design shall be a detailed permit level evaluation of the effect of:
1. CLIMATE DATA - Coincident hourly data for temperatures, solar radiation, wind, and humidity of typical days in the year representing seasonal variation.

2. BUILDING DATA - Orientation, size, shape, mass, air moisture, and heat transfer characteristics.

3. OPERATIONAL DATA - Temperature, humidity, ventilation illumination, control mode of spaces during occupied and unoccupied hours.

4. ENERGY CONSUMPTION - Maximum demand and annual usage of all energy sources used at the project site.

5. MECHANICAL EQUIPMENT - Design capacity, past load data.

6. BUILDING LOADS - Internal heat generation, lighting, equipment, number of people during occupied and unoccupied periods.

C. The calculation procedure shall simulate the operations of the building and its services through a full year operating period shall permit the evaluation of the effect of system design, climatic factors, operational characteristics, and mechanical equipment annual energy usage. Manufacturer’s data or comparable field test data shall be used when available in the simulation of all systems and equipment. The calculation procedure shall be based upon 8760 hours of operation on the building and its service systems and shall utilize design methods specified in the ASHRAE Handbooks.

D. The only approved computerized energy analysis software is EnergyPlus.

E. NO other programs are acceptable.

F. All input data shall be provided to the Owner at the conclusion of the calculation.

G. Demonstrate a minimum 24% improvement in the proposed building performance rating for new buildings, or a 20% improvement in the proposed building performance rating for major renovations to existing buildings, compared with the baseline building performance rating. Calculate the baseline building performance rating according to the building performance rating method in Appendix G of ANSI/ASHRAE/IESNA Standard 90.1-2007 (with errata but without addenda) using a computer simulation model for the whole building project.

H. Steam and Chilled water from the central distribution system shall be used for primary heating and cooling sources in any new or major renovation of a building. Provisions shall be made for heating domestic hot water with other fuels during those months when building heat is not required.

I. Independent systems using primary energy source are strongly discouraged. Plans for the expansion of the steam and chilled water distribution system into undeveloped areas of the campus have been prepared and should be consulted for new buildings.

J. Process cooling requirements are those space conditions which require specific temperature and/or humidification to be rigidly maintained. Examples are computer rooms, and clean rooms or other rigid temperature requirements must be maintained 100% of the time. Consider waterside economizers as an alternative scenario for all 24hr by 7day spaces.

K. The equipment to maintain such spaces shall be independent of the building HVAC system. Each space with its independent conditioning equipment shall have an electronic digital recorder or means to trend through the DDC controls system.
L. The conditioning equipment selection for computer rooms and other similar spaces shall be based on:
 1. 100% of sensible load.
 2. Total Cooling (100% sensible + 15% sensible (for dehumidification) x 125 (for future load).
 3. Other process cooling or heating equipment must be designed for 1.25% of known loads.

9.01 FACILITY REQUIREMENTS:

A. Facility:
 1. Residential, 24-hour operation.

B. Conditioning Requirements:
 1. Air Conditioning: Living area (student bedrooms resident manager living and bedroom), offices, telecommunications rooms and laundry rooms.
 5. Humidification: Low limit for living areas.

C. Internal Loads:
 1. Living Areas: Assigned occupants, lights off.
 2. Laundry Rooms: Lights off, non-ventilated machine loads.
 3. Other Areas: 100 sf/person, lights on.

D. Air Motion Air Conditioned:
 1. Classrooms: Provide demand controlled ventilation for all classrooms.
 2. Laboratory Areas: Minimum 6.0 air changes/hour.

E. Outside Air:
 2. Laundry Rooms: None. Obtain makeup air for dryers from circulation areas.
 3. Other Areas: Latest ASHRAE Standards.

F. Temperature Control:
 1. Living Areas: Zone, maximum six (6) student bedrooms/zone.
 2. Office Area: Zone maximum three (3) offices per thermostat zone.
 3. Laboratory Areas: Separate zone per lab.
 4. Other Air Conditioned Spaces: Individual room.
 5. Service Areas: Low limit.
G. Humidity provided for maintaining a minimum of 30% relative humidity in all buildings

H. Air Filtration: Provide filtration with a minimum efficiency reporting value (MERV) of 13 or higher.

I. Approved Air Conditioning Systems:
 1. No building wide electrical heating systems will be allowed.
 2. Low velocity, Variable volume, single zone.
 3. Low velocity variable volume, secondary air, terminal reheat.
 4. Medium velocity, variable volume primary air, constant/variable volume secondary air; terminal reheat.
 5. Air handling units (4 pipe system). Cooling: chilled water; Heating: hot water
 6. Fan coil units, self-contained (for use in renovation only).
 a. Variable refrigerant systems.
 b. Heat recovery symptoms.
 c. Radiant heating and cooling.
 7. Computer Grade A/C: Air cooled or water cooled w/variable fan speed control condenser. No water cooled systems that reject heat to building chill water loop are acceptable.

10.01 APPROVED CHILL AND HOT WATER PIPING DISTRIBUTIONS:

A. Chill water system: System shall be primary pumping through the building. System shall maintain a 12-15 psi deferential pressure set by T & B across the farthest cooling AHU in the system. Provide temperature gauges, pressure gauges, and isolation valves at all building entrance points in a fully serviceable dedicated mechanical space. Pressure and temperature data to be incorporated into the DDC controls network.

B. Each A.H.U. shall have a 2-way modulating valve and an automatic pressure independent means of controlling maximum flow. Pressure control valves may be considered for this requirement.

C. All buildings shall have a variable speed chilled water pump sized for the pressure requirements of the building it serves and controlled to maintain building pressure requirements. A pressure reset strategy shall be employed through the DDC controls to vary the pump speed and command the pumps OFF at minimum speeds to protect the motor. A means of bypassing campus water around the pumps shall be provided with controlled isolation and check valves that allow campus pressure to serve the building when the pumps are OFF.

D. Hot water heating system with natural gas/steam/hot water converter: system shall work from return water temperature to provide peak performance.

E. The building hydronic circulation systems shall have a standby pump. The pumps shall have a delta pressure switch across the pump provide a feedback into the building automation system which controls the lead/lag and standby pumps selection. See Control Section.

11.01 BALANCING OF WATER AND AIR DISTRIBUTION SYSTEMS:

A. All water and air distribution systems shall be balanced by the same contractor to within +10% of the design and design criteria and reported to Architect/Engineer in writing.
B. All water coils shall have a pressure independent automatic flow control device to ensure max flow or a pressure independent control valve.

C. Butterfly valves shall not be used as balancing or flow control valves.

12.01 PLACE THIS NOTE ON ALL SITE DRAWINGS: “CONTACT GEORGIA TECH FACILITIES INFRASTRUCTURE AT 404-385-6000 FOR INFORMATION REGARDING LOCATE REQUEST. SUBMIT COMPLETED LOCATE REQUEST FOR GEORGIA TECH OWNED UTILITIES AT LEAST 72 HOURS PRIOR TO ANY EXCAVATION.”

13.01 PROJECT SUBMITTAL CHECKLIST

A. Program:
 1. Mechanical systems narrative to address:
 d. Prime energy types state usage
 e. Off-site mechanical distribution
 f. Site mechanical distribution
 g. Piping routes
 h. Manholes
 i. Heat conversions systems
 j. Cooling building plant systems
 k. Piping methods and materials
 l. Air handler systems
 m. Air distribution systems
 n. Tenant requirements

B. Preliminary Design:
 1. Partial drawings to include the following:
 a. Off-site utility plans
 b. Mechanical site plans
 c. Piping riser diagram
 d. Equipment placement
 e. Control strategies and sensor table
 f. Partial design criteria for basic equipment, materials and methods.
 g. Submit 4 sets of plans and design criteria to Facilities Design and Construction for review and comment.

C. 50 - 75% Design Development:
 1. Well-developed drawings to include the following:
 a. Off-site utility plans
 b. Mechanical site plans
 c. Mechanical room layouts
d. Complete control strategies and sensor table

D. Design criteria to include the following:
 1. Complete set of standard or fully edited design criteria
 2. Submit 4 sets of plans and design criteria to Facilities Design and Construction for review and comment.

E. Final Design Submittal
 1. All design criteria, substantially complete.
 2. Submit load and expected energy usage calculations as per State of Georgia Energy requirement and Yellow Book requirement.
 3. Submit 4 sets of plans and design criteria to Facilities Design and Construction

F. Construction
 1. As-built drawings
 2. Drawings and design criteria in electronic form
 3. Operating and maintenance manuals.
 4. Any pump or piece of mechanical equipment purchased, included in its O&M manual. Blueprints with spec's so any piece can be machined by our machine shops.

END OF SECTION
230003 Space Conditions

1.01 DESIGN AND OPERATIONAL CONDITIONS:

A. Use the design points to design, size, and select all equipment. The construction documents shall indicate that the controls contractor shall set all of his control equipment to maintain the operational set points, not the design points.

<table>
<thead>
<tr>
<th>ROOM TYPE</th>
<th>DESIGN</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUMMER</td>
<td>WINTER</td>
</tr>
<tr>
<td></td>
<td>DB</td>
<td>RH</td>
</tr>
<tr>
<td>Student Bedrooms</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Study Rooms</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Lounges</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Recreation Rooms</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Meeting Rooms</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Offices</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Manager’s Quarters</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Manager’s Living Areas</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Manager’s Kitchens and Bathrooms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Toilet, Shower and Drying Rooms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Janitor Rooms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Storage Rooms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Laundry Rooms</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>Main Entrances</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>Corridors and Passages</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stairwells</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basements</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mechanical Rooms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Classrooms</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>*Laboratories</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Elevator Machine Rooms</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Telecommunications Rooms</td>
<td>75</td>
<td>60</td>
</tr>
</tbody>
</table>

*Laboratories may require more stringent temperature and humidity requirements. Engineer to evaluate project specific requirements.
230004 Design Criteria

1.01 General

A. Chilled water supply temperature from central plant to building: 44 F with winter reset up to 48 F.
B. Air supply at apparatus: 55 F. Provide temperature reset as required by the energy code.
C. Steam supply pressure from central plant to building: 50 psig.
D. Building operation steam pressure: 10 psig.

END OF SECTION
230519 Metering and Related Piping

A. Each building shall be equipped with meters for all utilities. Each auxiliary service area in a building shall be sub-metered for all utilities. Mechanical designers should ask Facilities Engineering for a copy of Ga Tech Facilities D&C metering specification 15122-dx200. Use this specification on all projects without any changes.

B. Natural gas and domestic water, if individually supplied by the serving utility company will be metered by that company. If Ga. Tech Natural Gas system is used the project is to provide metering similar to Atlanta Gas Light Co. standards with a Mercury Instruments correction electronics to include temperature and pressure corrections. The Mercury Instrument shall also have an RS485 com board. The Ga. Tech Natural Gas meter shall be temperature and pressure corrected and provide a contact closure to the metering data logger. Provide full bypass around the meter as well as valved and capped test ports on each side of the meter. Where these utilities are sub-fed to a building, sub-meters shall be provided for metering. Where metering is provided by AGL, provide with RS485 connectivity. In building with multiple gas service connections, submetering may be required for reporting. Consult with EH&S on project basis.

C. All underground natural gas piping shall be polyethylene piping and valves with an API 598 rating. An AWG 6 yellow insulated stranded signal wire shall be installed coiled around the gas piping for locating. Contact Georgia Tech Facilities Engineering for details. Where natural gas piping is ferrous follow the State of Georgia adapted 200x Standard Gas Code with Georgia amendments and provide cathodic protection.

D. Any area to be used for uses other than that of the main building (i.e., laundries, food areas, etc.) will be separately sub-metered for all utilities used.

E. Make up water for cooling towers, and any other water consumed in a process that is not returned to the sewer systems shall be separately metered, using meters that are scaled in cubic feet. The meter shall have a digital signal per 100 gallons and shall be totalized by the metering data logger.

F. Cooling tower blow down shall be separately metered, using meters that are scaled in cubic feet. The meter shall have a digital signal per 100 gallons and shall be totalized by the metering data logger. These meters shall have a mechanical non-resettable totalizer scaled in gallons or 100 gallons.

G. Steam consumption will be totalized by a condensate meter which shall be used on all condensate return pump stations. These meters shall have a mechanical non-resettable totalizer scaled in gallons or 100 gallons. These meters shall have a digital signal read by the metering data logger in units of 100 gallons and totalized. Direct steam metering shall be considered for new buildings.

H. Chilled water meter system shall measure BTU’s temperature corrected energy meter. The meter shall have a totalizer non-resettable, provide a visible scale indicating rate of consumption, and shall provide an RS485 Modbus connection to the metering data logger and output proportional to the rate of consumption. Units to be passed to the data logger are, Supply temp, Return Temp, Flow GPM, Btu energy rate BTU/Hr, Totalized consumption BTU-hr, and totalized Ton-hrs.
I. Owner domestic water meters: The meter shall have a digital signal per 100 gallons and shall be totalized by the metering data logger. These meters shall have a mechanical non-resettable totalizer scaled in gallons or 100 gallons.
 1. Linear flow device shall have a minimum 20 to 1 turndown
 2. Overall accuracy of plus or minus 1% of full scale with repeatability of plus or minus 0.25%.
 3. Flow metering sensor shall be an ultra sonic Doppler Effect sensor that does not penetrate the piping...
 4. In the case where the flow, temperature and pressure sensors are to be used in a wet location such as in site metering these devices shall have a NEMA 6P rating.
 5. Energy meters that are installed in damp or wet must be one of the following or an approved equal: Yokogawa DX Advanced 2010 Data Logger with submersible transducers.

J. Metering Data Logger
 1. Shall be a Yokogawa DX Advanced 2010 Data Logger. The data logger shall have 200 megabytes of memory, shall have RS485 Modbus and Ethernet TCP/IP communications ports. Contact GT Facilities D&C for detailed specifications. Installation/Integration contractor is required to notify the Facilities Management IT department via email at askIT@facilities.gatech.edu when installing/configuring Yokogawa data loggers in new or remodeled Georgia Tech campus buildings.

K. Data Logger mounting rack:
 1. Three (3) compartment, double hinged, 24" high, 20" deep, 19"EIA equipment rack.
 2. Front door to be smoked plexi-glass window.
 3. 400 lb. load capacity
 5. Cabinet Fan 57 CFM 120v, and fan plate
 6. Reusable dust filter kit for air intakes.
 7. Install door gasket kit on front door and middle door.
 8. Manufacture Hubbell
 9. Provide an Ethernet data connection to the Data Logger.
L. For new and major renovations, develop and implement a measurement and verification (M&V) plan consistent with Option D; Calibrated Simulation (Savings Estimation Method 2) as specified in the International Performance Measurement & Verification Protocol (IPMVP) Volume III: Concepts and Options for Determining Energy savings in New Construction, April, 2003 or with LEED credits for metering and enhanced commissioning. The M&V period must cover at least 1 year of post-construction occupancy. Provide a process for corrective action if the results of the M&V plan indicate that energy savings are not being achieved. OR Option 2: Develop and implement a measurement and verification (M&V) plan consistent with Option B; Energy Conservation Method as specified in the International Performance Measurement & Verification Protocol (IPMVP) Volume III: Concepts and Options for Determining Energy savings in New Construction, April, 2003. The M&V period must cover at least 1 year of post-construction occupancy. Provide a process for corrective action if the results of the M&V plan indicate that energy savings are not being achieved.

M. Electrical Metering:

1. See section 260100, 2.4,D.7. Each building shall be metered by the supplying utility. If the electrical power is provided by the institution, then the Engineer shall provide a KWH and KW demand meter. See electrical division for additional requirements.

2. Documentation regarding suitability for use in must be submitted for all equipment in accordance with other sections of the technical specification. Inclusion as an accepted manufacturer does not waive the submittal requirement.

END OF SECTION
230900 DDC Controls and HVAC Instrumentation

1.01 SCOPE

A. Georgia Institute of Technology (GT) has a standard DDC Control System. The primary purpose of this system is to provide dynamic control, economical operation and operational information of the equipment. When this system is installed it will aid the engineer in certifying that the contractor has installed and setup the equipment to engineer’s design criteria. This standard is mandatory before Georgia Tech will accept the mechanical portion of your project. Georgia Tech has an annual State of Georgia contract with its selected DDC controls contractor. Contact the Georgia Tech Facilities Engineering Department for the vendor contacts. It is intended and required in the State DDC contract that the DDC vendor work with the project engineers to develop the most efficient system and to aid the engineers with developing control design criteria to achieve such. The engineer of record shall engage with the Controls Contractor during design and use the controls specifications provided through Georgia Tech Facilities. The contract with the DDC contractor should be directly with the General Contractor.

B. The consulting engineer in conjunction with the commissioning agent will develop a Measurement and Verification Plan that will identify all sensors that need to be recorded for trend or data extraction. Refer to Section 230519. Contact Facilities Engineering for details.

C. All renovations of existing facilities.

D. The DDC contractor shall prepare a pre-bid pricing to furnish and install the controls as described in the plans and design criteria for the Architect. The Architect will place in the” F” Section the following:

1. The DDC controls as described in this project shall be provided by Johnson Controls, Inc. Contractor under State of Georgia DOAS. This RFP/P.O. has been assigned this contract for building controls work. The General contractor is directed to include Johnson Controls, Inc as the controls contractor. Pricing and change orders, as they relate to the DDC controls, will be priced as per or less than the RFP/P.O. pricing A campus-wide contract has been established with Johnson Controls to provide the facility management system under state of Georgia DOAS contract # 9020017203. This DOAS contract has been consigned to this project. The contact at Johnson controls is Tim Lucas (770-870-3931 or TIMOTHYBLUCAS@JCI.COM) Coordination of division of labor as it pertains to this scope is the responsibility of the General contractor. Division of labor shall be in accordance with 230900.

2. DDC pricing and scope shall be reviewed and accepted by the engineer of record and GT project manager as a perquisite to GC accepting a contract from the DDC contractor.

E. All new buildings built by Georgia Tech, for Georgia Tech or on the behalf of Georgia Tech by the State of Georgia, GSFIC, Georgia Tech Foundation, Georgia Tech Facilities Inc. shall provide building DDC controls as part of the project.

1. Georgia Tech requires all building automation controls (DDC) to be of the type that supports native BACnet protocol and all components shall be approved by the BACnet Testing Laboratory. The DDC vendor shall as part of the project. The Mechanical
designer shall use Georgia Tech's specifications "AUTOMATIC TEMPERATURE CONTROL SECTION 230900."

2.01 DETAILS OF CONTROLS

A. Variable air volume units and power mixing boxes: The engineer shall use DDC control modules, with room/space temperature sensor, supply air temperature percent of flow or mix air and reheat.

B. Fan coils/air handlers units shall have the following:
 1. Space sensors, discharge air sensor, return air sensor, mixed air sensor, damper electronic/pneumatic transducer (the actuators may be pneumatic), heating and cooling electronic/pneumatic transducer.

C. Install a permanent monitoring system to ensure that ventilation systems maintain design minimum requirements. Configure all monitoring equipment to generate an alarm when the air flow values or carbon dioxide (CO2) levels vary by 10% or more from the design values via either a building automation system alarm to the building operator or a visual or audible alert to the building occupants. Monitor CO2 concentrations within all densely occupied spaces as defined in the energy code of with an occupancy of over 10. CO2 monitors must be installed between 3 and 6 feet above the floor. Provide a direct outdoor air flow measurement device capable of measuring the minimum outdoor air intake flow with an accuracy of plus or minus 15% of the design minimum outdoor air rate, as defined by ASHRAE 62.1-2007 (with errata but without addenda) for mechanical ventilation systems where 20% or more of the design supply airflow serves non-densely occupied spaces.

D. All occupied spaces shall have wireless ZigBee BACnet space temperature sensors, with an occupancy button and a warmer cooler adjustment. Each occupied space shall have a CO2 sensor either wall mounted on return duct mounted. Consult with Ga Tech’s Section 230800 (contact Facilities Engineering for the latest copy) for specific control sequences.

E. Chiller plant optimization controls to interface with the control package provided by the chiller manufacturer. Controls shall have the following points: Chill water supply temperature, chill water return temperature, condenser water supply, condenser water return temperature, indoor air temperature, outdoor air temperature, and chillers start/stop enable chiller set point reset.

F. Include any temperature and/or pressure sensors that will provide enough information to complete thermodynamic picture of the engineer’s project, for example if you are connecting to the central chill water distribution system the engineer should include: temperature sensor, pressure sensors on the supply and return. Also include a flow transducer. Specify BTU calculations on the water extracted from the distribution system. See meter section. Flow metering sensor shall be an ultrasonic Doppler Effect sensor that does not penetrate the piping.
 1. The control sequences will be specified by the design project engineer.

G. The DDC contractor shall program the building controllers and existing DDC central operation server using Johnson Controls Inc, Metasys ADX server to locally log trend data at the building. On a continuous cycle the ADX server shall establish communications with the main building controller and retrieve the trend data. The server based operator workstation shall print the trend data in columns and rows and print a graphic chart depicting graphed data scaled in engineering units over the period of trend capture.
H. The DDC contractor shall install all graphic displays for all systems and controlled devices in the all ADX server located at the Rich Computing Center. The graphic displays shall illustrate the depiction of the device, sensor and control point locations. The graphic displays shall display dynamic sensor valves in engineering units.

I. The DDC contractor shall update the Georgia Tech Johnson ADX Metasys server with all set points, analog and digital input points and analog and digital output points.

J. The central computer shall contain an exact copy of all DDC control sequences in the project.

K. The DDC contractor shall provide as part of shop drawings a complete block DDC program; showing all logic, set points and control schedules. The contractor shall reference design criteria’s sections, and paragraphs to note which portions of the diagram depict the control sequence. The DDC contractor shall install a copy of the DDC control shop drawings on the campus web server.

L. A complete points list with range and scale for electrical and engineering units shall be provided as part of the shop submittal.

M. People Counter. This product is an extension of and existing system for GT M&V verification. In order to conform to and be compatible with the existing system this product sole source is required. Manufacturer: Infodev

N. DDC Internet Communications:

 1. Data Transmission Network

 a. DDC panels and the DDC central station shall be connected through the Georgia Tech Campus fiber optic network, using TCP/IP over an Ethernet, routed network. Provide all equipment, materials and software necessary to connect DDC panel to Owner provided connection to campus fiber optic network. It shall be possible to access any DDC panel through the network. Such access shall include full read write capability from an operational as well as programming standpoint. Total system information shall be available to the operator’s station.
O. Demand Shed and Temperature Setbacks

1. When demand limit programming is required, the system shall be programmed to raise all space temperatures 2°F when commanded by the BAS, with 74°F used as the centerline temperature.

2. Real Time Power Demand Shed program and Set Back modes: Georgia Tech's central Johnson Controls ADX server shall obtain Real Time Pricing by the hour for the next hour and 23 additional hours from Southern Company's electrical Real Time Pricing Server and store them in centrally accessible analog data points. The ADX server shall analyze the Real Time Pricing data.

3. If two consecutive hours are above a predefined set point then the system will send out email messages to inform Ga. Tech' operational staff that the campus will be entering the Real Time Set Back mode (Standby). The ADX will set a tri state value in each building main controller defining which temperature scheduled range to use, normal, standby setback and night setback.

4. If two consecutive hours are below a predefined set point then the system will send out email messages to inform Ga. Tech' operational staff that the campus will be leaving or removing the Real Time Set Back mode (Standby). The ADX will set a tri state value in each building main controller defining which temperature scheduled range to use, normal, standby setback and night setback.

5. Each controller shall have 3 temperature mode ranges for control, normal plus-minus 2 deg°F, Standby plus-minus 5 deg°F, Night setback plus-minus 9 deg°F.

6. Override priority of mode ranges shall be:

7. Night Setback overrides, Standby and Normal
 a. Standby overrides Normal
 b. Normal being the lowest priority.
 c. Day-night setback program: provide software to limit the rise or drop of space temperature during unoccupied hours. Whenever the space temperature is above (or below for heating) the operator assigned temperature limit, the system shall be enabled until the temperature is within the assigned temperature limit.

P. Dashboard

1. The displaying, reporting and control application will have a dashboard interface that will be presented to the user. The dashboard will have selectable widgets available that will display the current energy usage in a building, the carbon usage in the building, the current state of measurement and verification projects (if implemented), and other measurements pertaining to the health of the building. The dashboard widgets will be selectable by the user of the system. If multiple buildings, (determined by project) are included in the reporting and control application, there will be the ability to have widgets for the entire site as well as individual building.

Q. Naming Conventions

1. Graphic naming/trend naming/tag naming
a. Plant: Holland = “H”; 10th Street = “X”
b. Chiller/Boiler/Machine/System
 1) Chiller = CH
 2) Boiler = Bx – x = Boiler Number
c. Machine/System/Device
 1) Device/measurement
 a) Graphic = GR
 b) Trend = TR
 c) Temperature Sensor = TE
 d) Supply Temperature Sensor = ST
 e) Return Temperature Sensor = RT
 f) Pressure = PR
 g) Status = ST
 h) Volts = VT
 i) Amps = AM
 j) Level = LE
 k) Steam lbs/hr = LR
 l) Anything not defined above, use the first two characters of what it is or what it is measuring/displaying/trending
 2). Propane = Pp
 3). Dearator = De
 4). Loop pumps
 a) Outside loop pumps – OLP
 b) Inside loop pumps – ILP
 5) Water Treatment = WT
 6) Well Water = WW
d. Specific device/graphic/trend number/index number = xxx
 1) In the case of duplication graphics or trends, add to the index number – x
 where x is a number.
 a) Example 10th St. Chiller Plant Chiller #7 Supply Water Temperature Sensor.
 TagID = X-CH7GR015
 b) Example for 10th St. Chiller Plant Chiller #7 Graphic
 Graphic Name = X-CH7GR006
 c) Example for 10th St. Chiller Plant Chiller #7 Trend Supply Temperature
 Trend Name = X-CH7TRST009
 d) Example for 10th St. Chiller Plant Chiller #7 duplicate rend of the supply temperature
 Trend Name = X-CH7TRST009-2

3.01 EQUIPMENT

A. Control Dampers
 1. Minimum outside air dampers will be two-position parallel blade type; maximum outside air, return air and exhaust air will be modulating opposed blade type.
 2. Return air dampers will be normally open; all others normally closed.
3. Modulating dampers over ten (10) sq. ft. face area will have positive positioning operators. All dampers will move to their normal positions on shutdown of the supply air fan.

4. Damper construction will be heavy duty commercial quality with steel damper blades, steel shafts, oil tight bearings and rigid structural steel frame.

5. All dampers will have corrosion resistant finish; those exposed to the outside air will have galvanized blades and frames, and cadmium plated shafts.

6. All dampers will have blade edges and ends stripped with a resilient material or will have some other effective sealing method to limit leakage to 20 cfm/sq. ft. when closing against 4” w.g. static pressure.

7. Frames for dampers installed within lined ductwork will have flange dimension equal or greater than specified lining thicknesses. Spacers equal to lining thickness may be used to support damper frames installed within lined ductwork.

8. Damper operators will be selected for not more than 80% of published ratings. Linkage arms will be attached to shafts with two set screws 90 degrees apart.

B. Carbon Monoxide Monitor:

1. As an added safety factor a carbon monoxide monitor shall be provided in the mechanical room where a fuel or gas fired boiler is utilized. Refer to Section 283100 – Fire Detection and Alarm for requirements.

C. Pressure sensors

1. Pressure sensors must have a 1% basic accuracy over the 0 - 150 psi range. Sensors must maintain a 2% accuracy when being read remotely through the building automation system network.

2. When installed underground, vent or equalization tubes must be installed in a manner to prevent the entrance of water when the vault is in a flooded condition. Provide a sensor lead loop filled with glycerin from sensor element to pipe connection to prevent rupture from water freezing in lead tube. Pressure sensors must provide a 4-20mA output signal for connection to the building automation system.

3. Documentation regarding suitability for use in submersible application must be submitted for all equipment in accordance with other sections of this specification. Inclusion as an accepted manufacturer does not waive the submittal requirement.

4. Space thermostats shall be The WRZ-TT Series Wireless Room Temperature Sensors shall sense and transmit room temperatures, room set point, room occupancy notification low battery condition to an associated ZFR1811 Router.

5. Lead/Lag Pump Controller: Additional relay logic can be added should your design require it.
D. Carbon Dioxide Sensor:
 1. Add CO2 monitors in each temperature zone next to the DDC space sensor.
 2. Approved Monitor: Johnson Controls CD-W00-00-1 or submit for equal

4.01 SEQUENCE OF OPERATION

A. The sequence of operation is a requirement of any new or redesigned air handling unit. The following list of sequences shall be included in, but shall not not limit, the sequences of operation:

1. The minimum outside air damper will open when the supply air fan starts. Night set back shall be specified, the minimum outside air damper and interlocked exhaust fans will remain de-energized during the warm-up period. Use a ± 9 degf offset for night setback.

2. The thermostat sensor for modulating control of the dampers will have an averaging type element located in the cold deck plenum or air supply ductwork.

3. Thermometers and/or temperature calibrated branch pressure gauges will be provided for indicating supply air, return air and outside air temperatures.

4. Prior to adjustment of minimum outside air quantity, complete the adjustment of supply air quantity and shutoff cooling.

5. Use the following formula to calculate percentage outside air (% OSA):

 \[\% \text{ OSA} = \frac{(T_s - T_r)}{(T_o - T_r)} \]

 \(T_s = \) Supply air or cold deck temperature

 \(T_r = \) Return air temperature

 \(T_o = \) Outside air temperature

6. Take temperature readings and make damper adjustments until calculated percentage of outside air is within plus or minus 10% of the quantity specified. Mark linkages at final adjustment position.

7. Specify that records of readings, calculations, and adjustments will be lodged with architect. The starting sequence shall be listed, including the timing and starting order of all motors and the order they start.

8. All operating conditions including controlling inside, outside, and air handler temperatures and humidistat’s.
9. Damper operational conditions including minimum conditions shall be listed, and modulation of zone dampers, in multi-zone units, shall be listed.

10. Hot and cold deck resetting conditions shall be listed.

11. Hot and chilled water valve resetting conditions shall be listed.

12. Conditions for modulation of variable air volume systems shall be listed.

13. Night setback (up) and morning start-up conditions and sequences shall be listed.

14. Any interlocked equipment shall be listed.

15. Describe enthalpy economizer cycle.

16. Return air fans will be electrically interlocked with their respective supply air fans.

17. Seasonal changeovers of heating and cooling shall take into consideration the chilled water temperature. The seasonal changeover shall be set at outside air temperature of 65 degrees. If the chilled water temperature is not less than 55 degrees maintain 100 percent fresh air, otherwise operate outside air dampers under normal control sequence.

18. Demand Control Ventilation with VAV Terminal Unit
 a. Change the minimum air of the VAVs to ¼ of their existing settings.
 b. AHU during unoccupied periods: When all the temperature zones are in the unoccupied state, turn the fan off and command the VAV boxes to close (zero min cfm). Every hour in the unoccupied mode, run the fan 10 minutes and all of the VAV units are to go to the minimum cfm for this time period. At the ends of this cycle, all VAV’s go to close and Fan is off. Stage the AHU’s: do not run more than one AHU at a time during this unoccupied cycle.
 c. During Occupied periods: Control the space temperature as programmed today. The CO2 set point will be 1000 ppm. If the CO2 gets above set point, then start increasing the minimum air flow until CO2 is below set point. Maintain temperature with reheat. Rate of change should be no more than 10% per minute.
 d. In the case of occupancy override: Start the AHU and allow the VAV that has the override signal to operate, but keep all the other VAVs closed.

19. Carbon Monoxide Sensing in Boiler Rooms
 a. The monitor shall have two levels of alarms. The low level alarm shall be set to 40 ppm. When activated after a 2 second delay a signal shall be sent to all gas fired equipment shutting them down. Also a signal shall be given to the digital dialer (of the fire alarm system), the dialer shall transmit a code to the Georgia Tech Police Station indicating the heating equipment has been shut down. This does not set off the fire alarm.
b. The high level shall be set to 50 ppm. When activated after a 2 second delay it shall trip a fire alarm zone. The fire alarm shall activate the dialer. The dialer shall transmit a code to the Georgia Tech Police Station indicating a CO delay of 2 seconds shall ensure against false alarms.

END OF SECTION
1.00 PNEUMATIC CONTROL SYSTEMS ARE BECOMING LIMITED AND WILL BE USED FOR SELECTED BUILDINGS.

A. Buildings control air will be provided with 100 psig clean dry air from air compressors.
 1. Air compressors will be sized for one-third operating time.

B. All compressed air will use duplex compressor units.

C. Air will be dried by refrigerated units.

D. Tubing in mechanical rooms, other exposed locations and inaccessible locations will be seamless copper; concealed tubing in accessible locations will be polyethylene. Tubing will be attached to equipment and building by use of brackets and fasteners in a neat orderly manner.

E. Remote sensor type controllers shall have adjustable throttling range and authority and will be used in mechanical rooms with controllers installed in cabinets. Branch pressure gauges will be installed on all controllers. All controllers will be provided with nameplates.

F. On loss of operative power, controls shall sequence apparatus so as to prevent freeze damage to mechanical systems.

G. All renovations and new projects shall de-grease and purge the compressed air piping before connecting to controls.

END OF SECTION
231112 Campus Chilled Water Distribution System

1.01 CAMPUS CHILLED WATER DISTRIBUTION SYSTEM

A. Estimated system load will be determined by survey of listing permanent buildings, and
assessment of planned future buildings and land area reserved for future building sites.

B. The block cooling load of each existing permanent building will be calculated using design
conditions and calculation procedures established by these criteria. The rated or design
capacity of existing refrigeration machines shall not be used to assess building loads.

C. If preliminary plan or programs are available for planned future buildings, estimated cooling
loads shall be based on three (3) hundred square feet of gross building floor area per ton. If
plans or programs are not available, cooling loads shall be estimated to be one (1) ton per
thousand square feet for land area.

D. Estimated cooling loads for undeveloped areas reserved for future building sites will be based
on two (2) ton per thousand square feet of land area.

E. Campus chilled water distribution systems will be designed in accordance with master plans
developed by the institutions and approved by the Board of Regents.

F. First considerations in developing system master plans are:
 1. Campuses will be sub-divided into zones, each zone forming an independent system.
 2. Each zone should have an existing or potential cooling load of 1000 tons of refrigeration
 or more.
 3. Each zone will encompass ground area of approximately the same elevation.
 4. Zone will be compact area of minimum perimeter avoiding extension across main
 vehicular roadways whenever possible.
 5. Zone boundaries for undeveloped campus areas will be established based on approved
 master campus development plans.

G. Considerations in establishing pipe routing are:
 1. Lines will be routed to obtain maximum utilization of mains, i.e., maximum loading per
 unit length.
 2. Piping runs will be straight, parallel to building rows or other established campus pattern,
 with turns made at 90 degree angles whenever possible.
 3. Piping shall not be installed under roads, except to cross.
 4. System piping may be routed through existing basements and under future building
 locations. System piping under buildings will be installed in walk-through tunnels.
 5. Piping may be installed under and parallel to walkways.
 6. Existing permanent buildings will be surveyed to establish entry points and routing of
 branch lines.
2.01 UNDERGROUND CHILLED WATER PIPE SPECIFICATION

A. Specify a complete HDPE jacketed system of factory pre-insulated steel piping for the chilled water service. The jacket throughout the entire system shall incorporate electric fusion, butt fusion, or extrusion welding at all fittings, joint closures, or other points of connection. This shall create a jacket that is seamless throughout the entire system with the exception of anchors, whose water shed rings are sealed with a Raychem Dirax or Canusa GTS-65 wrap prohibiting the ingression of water. The system shall incorporate a copper wire, as specified below to make the system leak detection ready. All pre-insulated pipe, fittings, insulating materials, and technical support shall be provided by the Pre-insulated Piping System manufacturer.

B. Underground:

1. Steel Pipe and Fittings: Steel pipe and fittings shall be furnished in accordance with American Water Works Standard C-202-64T. Steel pipe shall be furnished with exterior 1" foam insulation and HDPE covering.

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Wall Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>4" ID</td>
<td>15/64"</td>
</tr>
<tr>
<td>6" ID</td>
<td>9/32 "</td>
</tr>
<tr>
<td>8" ID</td>
<td>¼"</td>
</tr>
<tr>
<td>10"ID</td>
<td>¼"</td>
</tr>
<tr>
<td>14"ID</td>
<td>¼"</td>
</tr>
<tr>
<td>20"ID</td>
<td>¼"</td>
</tr>
</tbody>
</table>

2. Fittings: Fittings shall be fabricated the same thickness and I.D. as the pipe. Maximum angular change shall not exceed 22 - 2 degrees per cut. Fittings 0 to 60 degrees shall conform to short radius dimensions. Fittings 60 to 90 degrees will be long radius dimensions. Fitting wall thickness shall be the same as the associated pipe reinforced as necessary.

3. Under Ground Chilled Water Insulation: The insulation and jacket cover shall be factory applied. The exterior coating shall be HDPE

a. Material: Insulation is to be not less than one inch (1") wall thickness rigid polyurethane foam. Density of polyurethane to be not less than 2.5-3.5 pounds per cubic foot, with a thermal conductivity (k) not less than of 0.14 BTU/hr-sq. ft.-degree F/in.

C. Butterfly Valves (Underground): All underground butterfly valves shall be high performance dual offset type complete with valve operators for buried services, extension stem, operating nuts. All underground valves shall be placed in a valve manhole that is large enough for a man to service the valves. The manhole shall have drain. The valves shall be insulated with removable boots. Service requirements shall be 150 psig operating pressure and line velocity of 12 feet per second.
D. Manholes/Valve Boxes, All manholes shall have 32" manhole rings and covers. The cover shall be sole sourced to McGuard, provide McGuard Fiber Shield locking, Keyed to Ga. Tech. Contact Marty Griffin, ph 770-704-8777 Valve Testing: API 598 Valve Inspection and Testing. The standard covers inspection, supplementary examination, and pressure test requirements for both resilient-seated and metal-to-metal seated gate, globe, plug, ball, check, and butterfly valves. Pertains to inspection by the purchaser and to any supplementary examinations the purchaser may require at the valve manufacturer's plant.

E. Field Service: Specify field service provided by a factory representative. The factory representative will be available at the job to test all HDPE fusion welds, check pipe installation, conduct system pressure testing, inspect field joint insulation, and observe backfilling techniques.

F. Obtain a material specification for underground piping directly from the Facilities Engineering offices.

END OF SECTION
1.01 BUILDING HVAC PIPING SYSTEM REFERENCE STANDARDS
 A. ANSI/ASME 816.3: Malleable-iron threaded fittings.
 C. ANSI/ASTM A126: Gray iron castings for valves, flanges, and pipe fittings.
 D. ASTM C645: Steel framing
 E. ASTM A525, G-60: Hot dipped galvanized.
 F. ANSI/ASTMB88: Copper piping.
 a. Steel piping shall be welded joints for equal to or greater than 2 ½” piping. Screwed joints may be used for joints less than 2 ½”. Grooved piping joints are not allowed for any hot and/or chilled water piping.
 3. Automatic Air Vents: Automatic air vents shall be an assembly comprised of both an automatic air vent and a manual air vent assembly. Provide an air vent at each high point of the circulating piping systems. Discharge shall be piped to nearest floor drain or unit drain pan. Discharge lines shall be run close to structure, walls, or larger piping.
 G. Copper to Steel Adapters: Provide cast bronze adapters at all copper connections to steel pipe. Adapters 2” smaller shall be cast bronze. Adapters larger than 2” shall be 150 lb. ANSI B16.25, 1977, cast bronze flanges.
 H. Cooling Coil Condensate Piping:
 1. Pipe: PVC or copper type L.

2.01 VALVES, STRAINER, UNIONS AND FLANGES
 A. Valves, strainers and flanges shall be rated at not less than 125 psi steam and 200 psi WOG working pressure.
 B. Valves 1 1/2” and smaller shall be ball valves and shall have screwed bronze body and bronze trim.
 C. Valves 2” and larger shall have flanged iron body and bronze.
 D. Butterfly valves used for main building shut off service shall be high performance dual offset type.
 E. Butterfly valves shall have iron body, bronze alloy disc, stainless steel stem, replaceable EDPM seats and 0 rings with 100% shutoff. Valves shall have infinite setting type lever handle with memory setting feature. Valves shall be water type. Valves shall be Crane, Damco, Norris, Jenkins Lukenheimer.
F. Strainers shall be Y-pattern type rated at not less than 125 psi steam and 200 WOG working pressure.

G. Strainers 1 2” and smaller shall have screwed iron body.

H. Strainers 2” and larger shall have flanged iron body.

I. Strainers baskets shall conform to the following:

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Perforation</th>
<th>Open Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water</td>
<td>Brass</td>
<td>1/10"</td>
<td>35% - 40%</td>
</tr>
</tbody>
</table>

J. Strainers shall be full size of the connection pipe.

K. Unions shall be provided in each pipe connection to all equipment.

L. Pipe 1 1/2“and smaller shall have malleable iron 150 psi screwed unions with ground joints. Pipe 2” and larger shall have 150 psi flanged unions.

M. Route piping parallel to building lines.

N. Provide sufficient union, flanges and shut-off valves to permit removal of equipment.

O. Spacing: Adequate to permit servicing valves and specialties and replacing sections of pipe.

P. Slope pipe to permit complete draining. Install drain valves at low points.

Q. Arrange hangers for adjustment of load and elevations after installation.

3.01 PENETRATIONS OF WALLS AND FLOORS:

A. At wall penetration: Pack the opening around pipe with non-shrink materials. At exterior face patch with an acceptable elastomeric sealant and paint to match existing wall color where penetration is exposed and visible.

B. All penetrations through walls, floors shall be core drilled.

4.01 FIELD VERIFICATION OF CHILLED WATER SYSTEM

A. The design engineer shall be solely responsible to field verify which pipe is supply and return of the chilled water system, after it is piped into the building and before any additional piping is connected to building loop. The building piping shall have entrance valves just inside the building. Hose bibbs shall be installed between valves and flange plates. The engineer shall determine which pipe is supply and return by bleeding chilled water outside with hoses until steady state temperature is reached in each line and record the temperatures. Also the engineer shall record the supply and return temperatures of the chilled water system at nearest buildings on the chilled water system as a comparison.

B. The supply and return line valves shall be tagged with the words Asupply@, Areturn@ and signed by the engineer. A letter of certification shall be submitted to the Owner.

5.01 INTERIOR CHILL WATER SYSTEMS

A. All interior chill water systems insulation shall be closed cell insulation with a protective cover/coating. Fiberglass is not an approved insulation. Closed cell material is to be rigid insulation with a thermal conductivity (k) of 0.16-0.18 btu/hr-sq. Ft. -degree f/in.
6.01 AHU

A. Before and after all ahu heating and cooling, coils, heat exchanger, chillers place a temperature gauge, pressure gauge, pete’s plug, dry well, and DDC temperature sensor.

B. When new piping is installed in a building with finished spaces, the piping shall be leak tested first with air at no greater than 40psig. Once passing the air test, a subsequent hydrostatic test shall be used to further validate the system. Hydrostatic testing shall be at 1 ½ times working pressure for at least four hours.

END OF SECTION
232123 Hydronic Pumps

1.01 PUMP CHARACTERISTICS

A. Chilled water pumps used on building systems shall be long coupled, horizontal direct drive, double suction centrifugal type. The pump shall be mounted on either a cast iron or steel base and driven by an electric motor.

B. The pump shall be constructed of the following materials:
 1. Case wearing rings Bronze ASTM B144-3B
 2. Casing Cast iron ASTM A48-56
 3. Ball bearings Steel
 4. Seal Mechanical (carbon/ceramic)
 5. Shaft sleeve Stainless steel
 6. Impeller Bronze ASTM B144-3B
 7. Shaft Carbon steel
 8. Coupling guard Formed sheet steel

C. Constant or Variable speed pumps shall not exceed 1750 rpm.

D. Pump case and components shall be so designed and manufactured as to withstand hydrostatic pressure equal to a minimum of two (2) times the greatest pressure imposed on the system.

E. Where a specific project has more than one (1) chilled water pump, all chilled water pumps will be of the same manufacturer.

F. All pump sets shall have the provision to measure the pressure drop across the pump and the temperature of the water. Pumps shall have a flange pressure port on entry and exit.

G. An auto/manual air vent shall be provided on all pump sets to eliminate trapped air in the pump.

H. Provide stand by pump for chill water system.

I. Butterfly valves shall not be used for balancing valves. Provide circuit setters for balancing pumps. Variable speed drives may also be used for balancing pumps.

J. Provide isolation valves on both sides of the pump. Circuit setter valves shall not be used as isolation valves.

K. For pumps larger than 20hp, no mechanical seals on condenser water pumps. Packing only.

END OF SECTION
232213 Steam & Condensate Heating Piping

1.01 PIPING CHARACTERISTICS

A. Estimated system load will be determined by survey of existing permanent buildings, and assessment of planned future buildings and land area reserved for future building sites.

B. The block heating load of each existing permanent building will be calculated using design conditions and calculation procedures established by these criteria. The rated or design capacity of existing heating systems shall not be used to assess building loads.

C. Preliminary plans and programs are available for planned future buildings: Estimated heating loads shall be based on 55 MBH per thousand square feet of gross building floor area. For areas that plans or programs are not available, heating loads shall be estimated to be 30 MBH per thousand square feet of land area.

D. Estimated heating load for undeveloped areas reserved for future building sites will be based on 30 MBH per thousand square feet of land.

E. The steam distribution system will be designed in accordance with the master plan developed by in the institution and approved by the Board of Regents.

F. First considerations in developing or extending system master plans are:
 a. Campus will be sub-divided into zones. Zones are to be separated by valves for zone isolation.
 b. Zones will be compact areas of minimum perimeter, avoiding extension across main vehicular roadways whenever possible.
 c. Zone boundaries for undeveloped campus area will be established based on approved master campus development plans.

2.01 CONSIDERATIONS FOR ESTABLISHING PIPE ROUTING ARE:

A. Line will be routed to obtain maximum utilization of mains, i.e., maximum loading per unit length.

B. Piping runs will be straight, parallel to building rows or other established campus pattern, with turns made at 90 degrees wherever possible.

C. Piping shall not be installed under roads, except to cross.

D. System piping may be routed through existing basements and under future building locations. The piping under buildings will be installed in walk-through tunnels. Underground distribution systems shall be installed in pipe tunnels with removable covers. Where tunnels cannot be used, conduit systems shall be used.

E. Piping may be installed under and parallel to walkways.

F. Existing permanent buildings will be surveyed to establish entry points and routing of branch lines. Steam line entry into building shall be as near as possible to the mechanical rooms.

G. Primary supply lines shall not be routed through or over occupied areas.

H. Floor pits shall be provided at entries to buildings without basements.
I. Steam piping for the distribution systems shall be ASTM A-53, grade B, schedule 40 seamless steel with welded joints. Condensate piping for the distribution systems shall be schedule 80 seamless steel with welded joints.

J. Under Ground steam and condensate Insulation: The insulation and jacket cover shall be factory applied. The exterior coating shall be HDPE; a material specification for underground piping should be obtained directly from the Facilities Engineering offices.

1. Material:
 a. HDPE jacketed system of factory preinsulated steel piping for the specified service. The jacket throughout the entire system shall incorporate electric fusion, butt fusion, or extrusion welding at all fittings, joint closures, or other points of connection. This shall create a jacket that is seamless throughout the entire system with the exception of anchors. All preinsulated pipe, fittings, insulating materials, and technical support shall be provided by the preinsulated piping system manufacturer.
 b. The steam supply line, and the medium pressure condensate line shall be furnished in separate jackets. Each line shall be equipped with completed leak detection system. Provide a portable testing unit.
 c. Insulation shall be polyisocyanurate foam insulation bonded to both the jacketing and carrier pipe and either spray applied or high pressure injected with one shot into the annular space between carrier pipe and jacket with a minimum thickness of 2-1/2” for systems operating at or below 366°F. Insulation shall be rigid, 85% closed cell foam insulation with not less than 2.4 pounds per cubic foot density, having a compressive strength of not less than 30 psi @ 75°F and a coefficient of thermal conductivity (K-Factor) not higher than 0.17 @ 75°F and 0.30 @ 366°F. Maximum operating temperature of the system shall not exceed 366°. Insulation thickness shall be standard manufacture’s recommended thickness for the size of the steam pipe.
 d. Leak Detection in Piping. The piping system manufacture shall install a wire in a manner that has the wire embedded in the foam insulation and not touching the piping.

K. Leak Detection in Piping. The piping system manufacturer shall install wire in a manner that has the wire embedded in the foam insulation and not touching the piping.

L. Valve bodies may be either cast or wrought steel; trim shall be stainless steel. Flanged joints shall be used for valves, strainers and other accessories for easy removal for cleaning and replacement.

M. Valve Insulation Covers: Provide reusable insulation covers for all valves 4-inches and above. The covers shall be used to butt against the field-applied insulation. A skirt with a drawstring will be provided at each end of the cover to provide approximately 4 inch of overlap with the insulated mating pipe. The insulation thickness of the mating pipe will be specified in the project specification. The outer and inner jackets shall be constructed of Silicon Impregnated Nomex Cloth (11 oz./yd2), with an Inconel knitted wire mesh covering on the inner jacket. The insulation shall be 11 lb./ft.3 Fiberglass Needled Mat. All stitching on the inner jacket. All stitching shall use Teflon coated Nomex thread and the fasteners shall be 20 gauge T-304 stainless steel wire twists with mating lacing pins. The valve covers shall be manufactured by the valve company to ensure proper fit and provide for single
source responsibility or approved equal. If valve manufacturer does not provide insulated valve covers, then contractor shall provide insulated valve cover of proper fit with each type of valve used on the project.

N. All distribution valves in the steam line shall be high performance ZERO leakage valves with metal to metal seating and triple offset conical seating.

O. Underground piping covering 150 mils, HDPE cover shall be used for steam and condensate lines. Joints shall be electro fusion welded and tested to 5 psi.

P. Provisions for expansion may be through AUB@ bends, offsets, or stainless steel bellow type expansion joints. Mechanical expansion joints shall be designed and installed anchors and guides to properly control movement and stresses in elbows.

Q. All steam distribution lines drip leg and manhole traps shall be carried to the nearest building to the condensate receiver.

R. System distribution pressure shall be 55 psig.

S. Building operation pressure shall be 10 psig.

T. Steam consumption will be totalized by a condensate meter which shall be used on all condensate return pump stations. These meters shall have a mechanical non-resettable totalizer scaled in gallons or 100 gallons. These meters shall have a digital signal ready by the DDC Control system and totalizer. The DDC system shall be programmed to sum and store the gallons passed through the meter. The digital signal shall be connected to the specified metering data logger.

U. All piping designs shall have a finite element stress analysis performed by the basis of design piping manufacture BEFORE the design is put out to bid. This process will identify any extreme stress locations in the piping design.

V. The system shall be specified to be Leak Detection Ready by means of installing a bare copper wire between the carrier pipe and the HDPE jacket. Require the piping system manufacturer to install the wire in a manner that has the wire embedded in the foam insulation and incorporated into each piece of pre-insulated pipe and fittings. Specify that the Contractor shall check continuity and electrical isolation of each piece of insulated pipe and fittings with a standard ohmmeter as it arrives at the jobsite. Specify that the Contractor shall connect the copper wires together at each field joint with the supplied insulated jumper cable and recommended crimping tool as per manufacturer’s instructions. Specify that the Contractor shall then check for continuity and electrical isolation using a standard ohmmeter over the length of the installed piping system before insulating straight run joint kits. After the piping system is installed, the Owner at any time may check the system for a leak by using a standard volt ohmmeter. Specify that in the event a leak is detected, the system manufacturer will be responsible to provide for a Time Domain Reflectometer (TDR) to determine the location of the leak for a warranty period of one year after installation. Specify that an alarm panel be installed, which will provide continuous leak detection monitoring.
W. Field Service: Specify field service provided by a factory representative. The factory representative will be available at the job to test all HDPE fusion welds, check pipe installation, conduct system pressure testing, inspect field joint insulation, and observe backfilling techniques.

X. Obtain a material specification for underground piping directly from the Facilities Engineering offices.

Y. Mandatory items:
 1. Spence PRV are the only acceptable steam PRVs.
 2. High Performance Butterfly (HPBF) Valves (Steam and Steam Condensate 2-1/2 Inches And Larger)
 a. High performance butterfly valves (HPBF) 2½ inches and larger in size shall be ANSI 150 pound class, cast carbon steel body, 316 stainless steel disc, 17-4 stainless steel shaft, single flanged lugged body style suitable for dead end service. Valves shall be of triple offset design to allow the disc to swing free of the seat in the open position. Seat design and material shall be single piece polymer RTFE with no o-rings or springs. Valves shall seal bi-directionally at full ANSI rating and shall be positive shutoff type. Valves shall have internal stop to prevent disc over-travel.
 b. PBF valves shall conform to ASME B 16.5, ASME B 16.34, MSS-SP-6, MSS-SP-68, API-609 for butterfly valves. Valve packing and trim shall be suitable for steam and steam condensate service. Valve packing shall be non-asbestos type.
 c. Valves 4 inches and larger shall have manual gear operators. Valves 3 inches and smaller shall have handle actuation. Operator extension shall be provided to accommodate adjacent pipe insulation.
 d. HPBF valves (steam service valves 6 inches and larger) shall be installed with a 1-inch globe valve bypass around the valve.
 e. HPBF valves shall be Cameron WKM DynaCentric or Owner approved equal.
 f. Each HPBF valve shall be provided with a flange pipe spool section of length to match a standard ANSI 150 pound class gate valve.

3.01 STEAM MANHOLE:
 A. Shall be H20 rated structures. All steam line valves and valve assemblies shall be placed in steam manholes. Each steam manhole shall include a steam powered sump pump. The basis of design Spence Condensate Little Boy Pump. A sump for the pump shall be provided in the manhole. The steam, vent and eject lines shall have union cuplings such that the pump can be removed for service.
 B. Steam manhole covers shall provide for minimum of AASHTO H-20 loading. The manhole shall provide for a clear opening of 36 inches. The cover shall be a 2 part cover with one part being a 38 inch cover with a 22 inch diameter. Removable lid having a 6 inch offset from the center of the main lid. The 22 inch removable lid shall have casted in the cover “G”-#STEAM” where * equals the GT UMAP grid number and where # equals the next consecutive manhole number in the GT UMAP grid that the work is being performed. Request GIT Design & Construction to provide these numbers.
C. **Basis of Design**

 NEETH FOUNDRY R-1741-D Type C lid or 1581 East Jordan Iron Works.

D. **Install 2 each 8 inch iron pipes for natural ventilation.** Install one approximately 1 foot from the manhole ceiling and another approximately 1 foot from the floor of the manhole. Install with a slope of 1/8 inch to the foot rise and extend the pipes above finish grade (if in the grass) 4-6 inches above finish grade. If finish grade is in a walkway, then the top of the grate to be flush with the walkway grade. The surface end of the ventilation pipe shall be covered with a cover that has at least 50 percent free opening. Drain grates are acceptable. Georgia Tech has install steam manhole ventilation tops to look similar to short area lighting post. See Klaus COC courtyard as an example.

END OF SECTION
234100 Air Treatment Equipment – Filters

1.00 FILTER CHARACTERISTICS

A. Air filters will be installed in all air handling system for the following purposes:
 1. To prevent fouling of heat exchange surfaces and mechanical equipment installed in the air stream.
 2. To remove contaminants from conditioned air supplied of critical areas.
 3. To remove pathogenic material, paint and grease from exhaust air.
 4. To remove lead dust from re-circulating air systems in firing ranges.

B. All air filters, except those installed in kitchen range hoods, will be renewable media type see ASHRAE Systems Handbook 2004 Chapter 24. Range hood filters will be permanent type.
 1. 2’ x 2’ filters will be specified for all apparatus.

C. Permanently installed filter gauges will be provided for all systems.

D. Permanently installed filter gauges will be provided on all exhaust systems having filters.

END OF SECTION
236416 Centrifugal and Rotary Screw Water Chillers

1.01 REFRIGERANTS

A. Centrifugal or screw water chilling machines shall be used on projects. All chillers shall be based on or HFC refrigerants R-134a, R-407c, and R-410A hydro fluorocarbon.

B. This shall apply to ALL small and large refrigeration equipment.

1. There will be zero use of chlorofluorocarbon (CFC) – based refrigerants in new base building HVAC systems. When reusing existing HVAC equipment, complete a comprehensive CFC phase-out conversion prior to project completion. Phase-out plans beyond the project completion date will be considered on their merits.

2. Select refrigerants and HVAC &R that minimize or eliminate the emission of compounds that contribute to ozone depletion and global climate change. The base building HVAC&R equipment must comply with the following formula, which sets a maximum threshold for the combined contributions to ozone depletion and global warming potential: \[\text{LCGWP + LCODP} \times 10^5 \leq 100 \]

2.01 OTHER CHARACTERISTICS:

A. ELECTRIC MOTOR DRIVEN MACHINES WILL BE CONSTANT OR VARIABLE SPEED TYPE WITH MOTOR SHAFT SPEED NOT exceeding 3600 rpm.

B. Compressors may be single or multiple stage. Evaporators may be flooded or director expansion type.

C. Machines shall be specified to deliver water at a temperature of 40 degrees F with evaporator temperature not below 32 degrees F assuming a condenser fouling factor of 0.0001 and the evaporator fouling factor of 0.0005 with an entering water temperature of 52 degrees F, shall have a 12 degree delta temperature drop. Condenser shall be configured for EWT 87 degree F, LWT 96.5 degree F.

D. A factory performance test shall be run and a certified test report is required to verify the design operating conditions.

E. Machine control systems shall be electric. Safety controls shall include a flow switch or differential pressure switch low temperature cut-off thermostat in the chilled water circuit.

F. Provide discharge and liquid line refrigerant isolation valves to allow isolation of the entire charge in the condenser while servicing the compressor. Check valves shall not be accepted.

G. Chiller control interfaces:

1. The interface shall be a high speed BACnet RS485, RS-232 serial or Ethernet interface. The chiller on board controls shall all total remote operations to start, stop, change all set points, obtain all chiller on board monitored sensors and read all alarms.

2. All chillers to be installed in the Holland Chiller Plant or the 10th St Chiller Plant shall interface with the existing Bailey Network 90 chiller plant control system.

3. All other chillers shall have a DDC interface.

H. Machines shall be installed in ground level or basement mechanical rooms with sufficient clearance provided perform all necessary routine maintenance, repairs and replacement of components.

I. Where a project has more than one (1) chiller, all chillers will be of the same manufacturer.
J. Equipment performance shall be in accordance with the Georgia State Energy Code ASHRAE 90.1-2001. The chiller shall have a kilowatt per ton rating within the range of 0.56-0.62 kw/ton. The designer should request NPLV ratings for the selected chiller, with the BIN weather data for Atlanta, Georgia.

K. The condenser and chilled water systems shall have a standby pump. A delta pressure switch across each pump shall provide a feedback signal to the building automation system which controls the lead/lag and standby pumps selection. See Controls Section.

L. All chillers shall have a 4 year extended warranty.

END OF SECTION
236500 Cooling Towers

1.00 GENERAL

A. Cooling towers or closed coolers shall be installed for all refrigeration systems using water for refrigerant condensing.

B. All cooling towers will be mechanical draft and may be of metallic or non-metallic construction. Return water distribution may be deck or spray type. Shall be designed for EWT 96.5 degf, LWT 87 degf, Ent air wet bulb 78 degf.

C. Towers will be installed, whenever possible, at grade level and be screened to achieve full concealment without adversely affecting performance or serviceability. Towers installed on roof of occupied buildings will be isolation mounted. Tower installment on roof will be discouraged.

D. The elevations of tower basin and storage tank operating levels and pump suctions shall be indicated on contract drawings to assure pump operation free of cavitation. Horizontal shaft pumps shall be installed inside buildings.

E. All cooling towers operating with wet basins will be provided with sufficient heat in the recirculating circuit to avoid draining of piping during sub-freezing weather.

F. Chemical treatment equipment shall be provided for all cooling towers.

G. All cooling towers shall be metered as detailed in Section 230519 (Metering). Pipe AHU condensate to building cooling towers.

H. All cooling towers shall have accessories to control the noise of the fans.

I. Cooling towers may have vfd fans and tower modulated bypass to control the cooling tower water temperature for low ambient temperatures.

J. Cooling towers shall be specified with stainless steel basins.

END OF SECTION
237200 Ventilation Systems

1.01 GENERAL

A. The term Sanitary Facilities refers to the following spaces: toilet, shower, drying and wash rooms; bathrooms; janitor closets.

B. Mechanical exhaust systems will be installed to remove odors and moisture generated in sanitary facilities. Other spaces requiring exhaust ventilation shall not be connected to sanitary exhaust systems.

C. The design of exhaust systems shall satisfy the following criteria:

1. Rate of exhaust shall not be less than 2.0 cfm/sf.

2. Corrosion resistant ceiling registers (grille with opposed blade damper) sized for a face velocity not exceeding 300 fpm shall be used and be located directly over the sources of odor and moisture (i.e., toilets, urinals, showers, hand basins and service sinks).

3. Unlined collection ductwork shall be installed to permit installation of minimum number of exhaust fans. Ceiling registers shall be connected independently by branches to the main ductwork to facilitate balancing and attenuate noise transmission. Branch ducts shall be sized based on a friction factor not exceeding 0.06"/100', main ducts not exceeding 0.10"/100'.

4. Exhaust fans shall be centrifugal type, preferably belt driven, selected for a wheel tip speed not exceeding 3,500 fpm and be installed whenever possible in mechanical rooms. Fans will not be installed above ceilings or other concealed or inaccessible locations. Fans shall be isolation mounted and have corrosion resistant gravity type backdraft dampers with blade edge and end seals.

5. Fans shall be controlled by time clocks, energy management system if provided, or by electrically interlocking with air handling apparatus introducing outside air into the building. An accessible non-fused disconnect switch shall be installed in or adjacent to each fan base.

D. All mechanical rooms containing heat generating equipment will be mechanically ventilated to prevent room temperature in the occupied zone from exceeding 15 degrees F above outside summer design temperature.

1. Ventilation air quantity should be based on not less than six (6) air changes per hour, or not less than is required to produce an air motion of 50 fpm.

2. Ventilation air shall be introduced on the cool side of the room and be relieved on the hot side so as to avoid diffusing heated air. Distribution and collection ductwork will be used, when necessary, to achieve optimum effectiveness of ventilation air systems.

3. Ventilation air may be introduced directly from the outside or be relieved or transferred from adjacent spaces. Air from sanitary facilities or air containing odors or pathogens shall not be used.

E. Mechanical rooms containing heating equipment fired with atmospheric burners will be maintained above atmospheric pressure. Doors will not be installed between these room and conditioned spaces.
F. Modulating mixing dampers shall be installed on the inlet of makeup or supply air fans to permit continuous year-round operation. A low limit supply air thermostat with a setpoint of 60 degrees F will be provided to position the dampers. Use of unit ventilators and heating and ventilating units is permitted.

G. The term Service Facilities refers to such temporary occupancy spaces as vending machine alcoves or rooms and telephone rooms.

H. Service facilities will be ventilated at the rate of ten (10) air changes per hour by use of transfers or using such spaces as return air plenums. The air from these spaces shall not be exhausted from the building.

I. No ventilation systems shall exceed the design criteria established for NOISE as noted in the ASHRAE Design Guide lines. [enough for presentation classrooms]

J. Air to air and enthalpy wheel economizer shall be utilized on all non-toxic major ventilation exhaust system. In toxic ventilation exhaust utilize sensible heat recovery systems to temper the fresh air. In the case where the exhaust and building fresh air ductwork do not run close for a heat pipe system then a pumped heat pipe system shall be utilized.

END OF SECTION
237201 Laboratory Fume Hoods

1.01 FUME HOODS (GENERAL AND RADIOISOTOPE)

A. All fume hood exhaust systems, except those designed for use with experiments involving perchloric or hot nitric acids shall conform to the following criteria. Consult with the Facilities Engineering Department for the latest design criteria for Fume Hoods and Fume Hood Face Velocity Controllers.

B. Locate fume hoods on uppermost floor of building. Location on floor shall be at opposite end of room from exits, away from used walkways; door and operable windows. Coordinate location to allow exhaust duct to be run up through roof with no offsets.

C. Each hood shall have an individual fan and exhaust duct or be connected to a manifold exhaust system. Joints in duct shall be air tight.

D. Auxiliary air fume hoods shall have provisions for shut-off of make-up air to the hood when fume hood exhaust fan is shut off.

E. See latest issue of Mechanical Design Criteria as published by the Board of Regents of The University System of Georgia for additional requirements.

F. Approval for any deviation from this criteria must be obtained in writing form the Associate Vice President for Facilities and Operations, and Associate vice President for Environmental Health and Safety at Georgia Tech.

G. An investigation of the type contaminants to be exhausted and the process involving same should proceed system design. Provide a document indicating which chemicals and estimated amount of chemical will be used in the hood. Provide this document to the Ga. Tech Facilities EPD officer.

H. All fume hoods shall be tested by the Georgia Tech Environmental Safety Department for performance.

I. Mechanical designers are to check with the Georgia Tech Environmental Safety Department for face velocities, cfm and testing requirements.

J. Duct below ceiling shall be satin brushed finish with longitudinal joint ground smooth and against wall.

2.01 FUME HOOD EXHAUST DUCT REQUIREMENTS

A. Exhaust duct shall be run vertical with no offsets permitted except at fan suction. A 90' elbow shall be used to connect duct to suction side of fan. The distance between flanges face of 90' elbow and suction flange of fan shall not exceed 6 inches in length.

B. Fume hood exhaust duct shall extend from fan discharge flange and shall terminate above the transition zone between air moving freely past the building and the turbulent air restrained on the roof or lee side of the building and away from fresh air intakes.

C. Exhaust ducts shall discharge straight up and provision shall be made to capture and drain the rain water which enters the stack.

D. See latest version of BOR fume hood design criteria, otherwise duct shall be 16 gauge, type 304 stainless steel, welded with stainless steel rod. Weld longitudinal joints in three (3) foot sections maximum and grind interior joint with flanged end connections. Grind interior joints all smooth. Provide acid resistant gaskets for flanged connections.
E. Duct below ceiling shall be satin brushed finish with longitudinal joint ground smooth and against wall.

3.01 FUME HOOD EXHAUST FAN REQUIREMENTS

A. All exhaust fans serving fume hoods must be located on or above the building roof level. Fan exhaust shall extend 10 ft above room and have an exit velocity of minimum of 3,500 ft/min. All ganged hoods systems shall a minimum of one standby fan.

B. Fume hood fan shall be direct drive fan complete with one-piece gray cast iron housing; cast iron paddle wheel, (stuffing box consisting of brass lantern ring with three rows of packing), flanged inlet and outlet; drain connection; explosion proof motor; weather tight motor and drive housing; and explosion proof fan disconnect switch.

C. Fan capacities shall conform to those outlined on chart A Fume Hood Air Requirements, located in the Mechanical Design Criteria of the Board of Regents of the University System of Georgia. A minimum of 100 SFM shall be maintained at all such opening positions.

D. All fume hoods shall have controls which constantly adjust the exhaust air to maintain 100 SFM of air across the face of the hood for all sash positions and with all activities taking place in the hood. The measurement shall be by direct measurement means such as through the wall sensors.

E. All makeup air shall be tempered to maintain the room temperature and shall maintain a negative pressure of the lab to the adjacent spaces such as halls, labs and offices at all times under all conditions. Pressure tracing systems are the preferred method. Specify a diaphragm delta-P sensor to measure pressure differential between the laboratory and the reference space. Maintain -0.005” w.g. pressure differential. Do not specify volumetric control. Refer to Section 230900 DDC Control and Instrumentation.

F. Georgia Tech requires to have the fume hood run 100% of the time because researchers tend to store chemicals in the hoods, therefore off/on switches are not allowed. Should they be allowed then auxiliary air fume hoods shall have provisions for shut-off of make-up air to the hood when fume room exhaust fan is shut off.

G. Provide heat pipe heat recovery system for fume hood exhaust.

4.01 ADDITIONAL REQUIREMENTS FOR RADIOISOTOPE FUME HOODS

A. Duct system design must take into account allowances required by filter section installed in the exhaust duct. Check manufacturers’ design data for physical dimensions of filter section.

B. Fume hood exhaust fans must be sized to overcome static pressure losses across filter (s) in exhaust duct. See manufacturers’ data and attached A Fume Hood Air Requirements for static pressure requirements.

5.01 FUME HOODS (PERCHLORIC AND HOT NITRIC ACID)

A. Locate fume hoods on uppermost floor of building. Location on floor shall be at opposite end of room from exits, away from frequently used walkways, doors and operable windows. Coordinate location to allow exhaust duct to be run up through roof with no offsets.

B. Each hood shall have an individual fan and exhaust duct. Joints in duct shall be air tight.

C. Auxiliary air fume hoods shall have provisions for shut-off of make-up air to the hood when fume room exhaust fan is shut off.
D. See latest issue of Mechanical Design Criteria as published by The Board of Regents of the University System of Georgia for additional requirements.

E. Approval for any deviation from this criteria must be obtained in writing from the Vice Chancellor for Construction and Physical Plant, Board of Regents of the University System of Georgia.

F. An investigation of the type contaminants to be exhausted and the process involving same should proceed system design.

6.01 Fume Hood Exhaust Duct Requirements

A. Exhaust duct shall be run vertical, where possible, with no offsets permitted except at fan suction. An elbow shall be used to connect duct to suction side of fan. The distance between flange face of an elbow and suction flange of fan shall not exceed 6 inches in length.

B. Fume hood exhaust duct shall extend from fan discharge flange and shall terminate above the transition zone between air moving freely past the building and the turbulent air restrained on the roof or less side of the building and away from fresh air intakes. Configure the duct exhaust to have a minimum exit velocity of 3500 fpm.

C. Exhaust ducts shall discharge straight up and provision shall be made to capture and drain the rain water which enters the stack.

D. Select the most appropriate material for the application. But in the case of a general fume hood or chemical duct. The duct shall be 16 gauge 316 stainless steel, welded with stainless steel rod. Weld longitudinal joints in three (3) foot sections maximum and grind interior joint smooth. Weld sections together to form one stack length with flanged end connections. Grind interior joints all smooth. Provide acid resistant gaskets for flanged connections.

E. Duct below ceiling shall be satin brushed finish with longitudinal joint ground smooth and against wall.

7.01 Fume Hood Exhaust Fan Requirements

A. All exhaust fans serving fume hoods must be located on or above the building roof level.

B. Fume hood fan shall be direct driven fan complete with one-piece gray cast iron housing; cast iron paddle wheel; (stuffing box consisting of brass lantern ring with three rows of packing), flanged inlet and outlet; drain connection; explosion proof motor; weather tight motor and drive housing; and explosion proof fan disconnect switch.

C. Fan capacities shall conform to those outlined on chart Fume Hood Air Requirements located in the Mechanical Design Criteria of The Board of Regents of the University System of Georgia. All fans shall be sized to maintain a 100 SFM at any sash opening position.

D. Ganged exhaust systems shall be designed with N+1 fans. N‘total requirement, +1 ‘ one standby fan per system.

8.01 Wash Down Requirements

A. Provide a system of wash down spray nozzles for washing down of exhaust duct and fan.
B. Provide water spray nozzles at the following locations:
 1. Top of fan discharge stack
 2. In 6 inch spool piece
 3. Dual spray nozzles in 90 deg elbows
 4. Fan housing
 5. Top of hood (supplied by hood manufacturer)
C. Provide drain for wash water in fan housing. Provide freeze protection for drain and water pipe above roof.
D. Provide a stop and drain valve in the heat supply line to the spray nozzles to enable draining down of the system.
E. All pipe coming in contact with exhaust fume shall be stainless steel.

9.01 TESTING AND ACCEPTANCE
A. All fume hoods shall be tested by the campus Environmental Safety Department. A certificate of acceptance shall be affixed to the fume hood upon acceptance.
B. Consult with campus Environmental Safety Department for proper test to be performed.

END OF SECTION
237313 Indoor Central-Station Air-Handling Units

1.01 GENERAL

A. All central air systems over 10,000 cfm supply air will be designed to introduce 100% outside air to the building during economizer mode.

B. Designs will include motorized minimum and maximum outside air dampers and exhaust air dampers for each air system. Where the return air system pressure drop does not exceed 0.10" W.G., the return air fan may be omitted and gravity relief dampers may be used.

C. Outside air will be drawn in through wall louvers with exhaust discharge above the room or above the intake louvers. Where intake and exhaust louvers must be installed at the same elevation, horizontal distance between louver sides will be not less than twenty (20) feet. Intakes shall not be within 20' of cooling towers and shall not be near loading docks, vehicle loading zones or service areas where garbage receptacles are located. Intakes shall be at least 10' above adjacent roadway.

D. Dampers will be sized for a face velocity for not less than 1,000 cfm. Minimum outside air dampers will be sized for not less than 15% of supply air cfm, all others, not greater than 85% of supply air cfm.

E. Return and outside air ductwork and dampers will be arranged to achieve complete mixing of these two air streams prior to entry into the air handling apparatus. Where complete mixing cannot be achieved, the outside air will be introduced above or below the return air so the stratification occurs only in the vertical plane. Arrange exhaust and intake ductwork side-by-side where feasible to allow convenient installation of heat recovery systems.

F. Dampers will be installed with blade shafts horizontal. An access door having a minimum clear opening of 12" x 12" will be installed adjacent to each concealed damper.

G. Return air fans may be centrifugal or axial flow type but all will be belt driven, have lubrication fittings accessible outside the fan housing, and be selected for an outlet velocity of not greater than 2,500 fpm.

H. A strip heating coil shall be installed at the bottom of the face side of the cooling coil to provide freeze protection. The strip heater shall be controlled by the freeze stat to operate when the freeze stat shuts down the unit for protection.

I. All central air systems over 3000 cfm supply air shall have an economizer control installed. The controls shall modulate the return, fresh air and mixing damper to maintain a constant supply temperature. The control system shall compare the return and outside air temperatures. When the outside air is less than the return air temperature, the economizer cycle shall be activated.

J. The ASHRAE Noise criteria shall apply to all spaces.

K. Field assembled or factory fabricated air units may be used for systems.

L. Building walls will be used whenever possible to form the walls and tops of housings. Sheet metal walls and casing tops will be constructed in accordance with details based on the recommendations of SMACNA. Curb anchoring will be detailed for plenums pressurized by Class II and Class III fans.
M. Filter Sections: Air filtration shall be provided in every air handling system. Air-handling units shall have a disposable pre-filter and a final filter. The filter media shall be rated in accordance with ASHRAE Systems Handbook 2004 Chapter 24. Filter racks shall be designed to minimize the bypass of air around the filter media with a maximum bypass leakage of 0.5 percent. Filters shall be sized at 2.5 m/s (500 FPM) maximum face velocity. Filter media shall be fabricated so that fibrous shedding does not exceed levels prescribed by ASHRAE 52. The filter housing and all air-handling components downstream shall not be internally lined with fibrous insulation. Double-wall construction or an externally insulated sheet metal housing is acceptable. The filter change-out pressure drop, not the initial clean filter rating, must be used in determining fan pressure requirements. Differential pressure gauges and sensors shall be placed across each filter bank to allow quick and accurate assessment of filter dust loading as reflected by air-pressure loss through the filter and sensors shall be connected to building automation system.

N. Plenum chambers will rest on 4” high concrete bases and be sized and arranged to permit servicing and repair of fans and filters, and replacement of finned tube coils. Each chamber will be lighted and have an access door not smaller than 24” x 48”. Access doors will be provided with safety latches and be hinged to swing into the area of highest static pressure. Fan shutdown switches will be provided inside casings pressurized by Class II and Class III fans.

O. Cooling coils will be mounted vertically in a straight line with tubes perpendicular to air flow.
 1. Coils will be independently supported on galvanized structural frames. Coils: Individual finned tube coils should generally be between six and eight rows with at least 2.1 mm between fins (12 fins per inch) to ensure that the coils can be effectively and efficiently cleaned. Dehumidifying coils shall be selected for no more than negligible water droplet carryover beyond the drain pan at design conditions. All hot water heating and chilled water cooling coils shall be copper tube and copper finned materials. Equipment and other obstructions in the air stream shall be located sufficiently downstream of the coil so that it will not come in contact with the water droplet carryover. Cooling coils shall be selected at or below 2.5 m/s face velocity (500 fpm) to minimize moisture carryover. Heating coils shall be selected at or below 3.8 m/s face velocity (750 fpm).

P. Intermediate condensate drain pans, projecting not less than 12” downstream of coil frames, constructed of stainless steel or monel, will be installed between each coiled section with vertical copper drain lines to carry condensate to floor pan.
 1. Block off sheets of 24 gauge galvanized steel will be installed with caulking to prevent air bypass and leakage. Condensate drains will be trapped.

Q. UVC Emitters/Lamps: Ultraviolet light 8 band emitters/amps shall be incorporated downstream of all cooling coils and above all drain pans to control airborne and surface microbial growth and transfer.
 1. Irradiation - Emitters and fixtures are to be installed in sufficient quantity and in such an arrangement so as to provide an equal distribution of UVC energy on the coil and in the drain pan. To maintain energy efficiency, the UVC energy produced shall be of the lowest possible reflected and shadowed losses.
2. Intensity - The minimal UVC energy striking the leading edge of all the coil fins shall not be less than 1500 W/cm². This sets the quantity of fixtures to be installed and their placement. The emitter tube shall be of the high output, hot cathode, T5 (15mm) diameter, and medium bi-pin type. They shall produce 95% of their energy at 254 nm and be capable of producing the specified output at airflow velocities to 1000 fpm at temperatures of 35 - 170 °F.

R. Output Verification: When tested in accordance with the general provisions of IES Lighting Handbook, 1981 Applications Volume, total output per one inch arc length shall not be less than 10 MBOL 12W/cm², at one meter, in a 400 fpm airstream of 45 °F. Applied fixtures/lamps must be specifically manufactured for this purpose. Safety interlocks/features shall be provided to limit hazard to operating staff.

S. Access Doors: Access Doors shall be provided at air handling units downstream of each coil, upstream of each filter section and adjacent to each drain pan and fan section. Access doors shall be of sufficient size to allow personnel to enter the unit to inspect and service all portions of the equipment components.

T. Coil face velocity shall NOT greater than 500 fpm.

U. Plenums containing cooling coils will be wide enough to fully enclose coil end turns and headers, and provide clearance between coiled surfaces and plenum insulation.

V. Heating coils in blow-through, dual-deck apparatus will be baffled or installed downstream of cooling coils at least 24" to prevent weeping.

W. Piping risers will be offset from coils and be provided with unions to facilitate removal of coils. Bottoms of risers will have drain valves; tops, manual vent valves.

X. Fans mounted on grade and those on above grade floors will be isolation mounted. Fan motors greater than 7.5 hp should be premium high efficiency models.

Y. Install a permanent monitoring system to ensure that ventilation systems maintain design minimum requirements. Configure all monitoring equipment to generate an alarm when the air flow values or carbon dioxide (CO2) levels vary by 10% or more from the design values via either a building automation system alarm to the building operator or a visual or audible alert to the building occupants. AND Monitor CO2 concentrations within all densely occupied spaces (those with a design occupant density of 25 people or more per 1000 s.f.). CO2 monitors must be between 3 and 6 feet above the floor. Provide a direct outdoor air flow measurement device capable of measuring the minimum outdoor air intake flow with an accuracy of plus or minus 15% of the design minimum outdoor air rate, as defined by ASHRAE 62.1-2007 (with errata but without addenda) for mechanical ventilation systems where 20% or more of the design supply airflow serves no densely occupied spaces.

END OF SECTION
238123 Computer Room Air Conditioning Units

1.00 COMPUTER ROOMS AND CONTROLLED ENVIRONMENT LABS:

A. There are many small computer rooms and controlled environment labs required at Georgia Tech. These facilities require much more rigid control of both temperature and humidity than is required for comfort conditions in the remainder of the building.

B. All computer rooms and controlled environment labs shall be designed with air conditioning equipment completely independent of the primary building system. Air conditioning systems designed SPECIFICALLY for close control of temperature and humidity shall be specified. The systems will provide for cooling, humidification, dehumidification, and reheat.

C. Consideration should be given to the energy consumption of these units. Innovation for heat reclaim and free cooling should be considered if the components themselves have proven reliability.

D. Down flow units feeding through a raised floor are desired. Where practical, multi-stage units should be specified.

E. Remote air cooled system should be considered. Condenser shall be variable fan speed control type. No water cooled system that rejects heat to building chill water distribution system is acceptable.

F. All computer room and controlled environment equipment shall automatically restart after a loss of power.

G. There will be zero use of chlorofluorocarbon (CFC) – based refrigerants in new base building HVAC systems. When reusing existing HVAC equipment, complete a comprehensive CFC phase-out conversion prior to project completion. Phase-out plans beyond the project completion date will be considered on their merits.

H. Select refrigerants and HVAC &R that minimize or eliminate the emission of compounds that contribute to ozone depletion and global climate change. The base building HVAC&R equipment must comply with the following formula, which sets a maximum threshold for the combined contributions to ozone depletion and global warming potential: LCGWP + LCODP * 10⁵ ≤ 100

I. All heating and cooling coils shall have a pressure gauge and temperature gauge on the piping, entering and leaving the coil.

J. Cooling coil condensate, where ever feasible run the cooling condensate to a holding tank outside of the building for irrigation or back to the cooling tower.

END OF SECTION
238233 Heating Systems

1.01 GENERAL

A. Supplementary heat should be considered for the following purposes:
 1. To prevent down drafts at windows.
 2. To limit supply heating air temperature to 105 degrees F.
 3. To provide heating at entrances.
 4. To permit systems serving exterior rooms to supply air below room temperature year-round.

B. Supplementary heat will be installed under glass when the glass area exceeds ten (10) percent of the wall area. The heaters shall be sized for 75% of glass transmission heat loss or be of sufficient capacity to limit supply air temperature to 105 degrees F. Electric heaters shall have self-contained thermostats. Hot water heater capacity shall be regulated by varying the water temperature by change in outdoor temperature.

C. Forced convection heaters sized for 130% of transmission heat loss will be installed at main entrances. Natural convection heaters sized for 100% of transmission heat loss will be installed at secondary entrances.

D. All supplementary heat installed in air conditioned spaces shall be de-energized automatically during summer operation.

E. Boilers/Hot water heating systems.

2.01 HOT WATER BOILERS

A. New boilers shall be the modular, condensing type, operated on natural gas. Boilers should be equipped with the following features as minimum:
 2. Category IV direct vent capability to 100’
 3. Gasket-less design
 4. Spark ignition
 5. ASME Stainless steel heat exchanger
 6. Modbus or BAC Net communication port
 7. ASME stamp
 8. Up to 96% efficiency
B. All boilers/hot water heaters shall have a Low-NOx® burners are required, as a minimum, for boilers installed at GT, per the new EPA/EPD regulations. Additionally, sizing of boilers must be considered. Individual boilers must be rated under 10 million BTU’s each to preclude additional and more stringent permitting procedures. All boilers and large water heaters shall be sized to operate at rated capacity with natural gas and/or air-propane mixture with a specific gravity of 1.3 and 1,350BTU/cubic foot in the same fuel train. The maximum low NOx rating shall be 30ppm of NOx for natural gas and air-propane mixture. See Section 238234 EPA Title V Requirements. Boilers that work best have O2 trim.

C. Each construction contract that installs or replaces any boiler/hot water heater that is connected to the Ga. Tech natural gas system shall arrange with the Ga Tech O&M Steam Plant to test the boiler/hot water heater as per the following procedure.

1. Tune the boiler/hot water heater/generator on natural gas. Record all the tuned settings. Label them Natural Gas Tuned Settings.

2. Schedule with the Ga. Tech Steam Plant to provide air-propane needed to replace the natural gas. Allow enough time for the natural gas or air-propane mixture to reach the appliance you are testing. Tune the boiler/hot water heater/generator on air-propane. Record all the tuned setting. Label them as Air-Propane Tuned Setting.

3. Re-tune the boiler/hot water heater/generator to midway between the Natural Gas Setting and the Air-Propane Tuned Settings. Record these setting as Mid Natural Gas and Air-Propane Settings.

4. Test the boiler/hot-water heater/generator to relight on BOTH the Air-Propane mixture and natural gas. Allow enough time for the natural gas or air-propane mixture to reach the appliance you are testing.

END OF SECTION
238234 EPA Title V Requirements

1. GENERAL

A. Since January 1, 2004, the 18 county Atlanta metro area has been designated by the Federal EPA to be a severe attainment area. This means that EACH AND EVERY SYSTEM that burns or consumes fusel fuels shall meet the same NOx emissions standards as Los Angeles, CA. EPA Title V requirements.

B. Because Ga. Tech has exceeded its 25 tons of NOx that it has been allotted each new project has to submit to the State of Georgia EPA the projected emissions for a new source review. Each project will be required to purchase NOx allotments to offset the project’s impact on Georgia Tech NOX allocation.

C. Each gas fired device shall be purchased with the (BACT) Best Available Control Technology. The limits of emissions are a moving target and change with time. As of the writing of this section the following limits of emissions apply.

1. Boilers and hot water heaters that have a potential to emit greater than 1 ton of NOx annually shall have a NOx emission rating of less than 30 ppm.

D. Emergency standby generators with capacities of > 35 kW shall be equipped with a system which limits NOx emissions to 1.5 grams/hp-hr or less. This unit shall meet the EPA Title V for S.C.A.Q.M.D requirements. The contractor shall provide manufactures data sheets to confirm before ordering.

E. Each piece of fuel burning equipment (emergency standby generators excluded) having a potential to emit greater than one ton of NOx emissions annually shall be re-tested and re-certified for proper combustion and emission tuning between the dates of February 1 and May 1, annually. Therefore, if a project starts up a boiler or hot water heater, having a potential to emit greater than one ton of NOx emissions annually, prior to May 1 of a calendar year, then the boiler or water heater shall be tested and certified for proper combustion and emission tuning between the dates of February 1 and May 1, of that calendar year.
260500 Common Work Results for Electrical

1.01 SCOPE

A. This Division contains design and construction requirements for electrical aspects of construction and renovation projects for Georgia Tech and is intended for use by engineers involved in such projects. Design criteria established by the Board of Regents also apply. Refer to the project program for electrical requirements in addition to those of this section.

B. The engineer is expected to use his own specifications and to provide design work in accordance with his standard practice subject to the requirements stated in this guide.

C. This document does not address all aspects of electrical construction. It addresses only those items for which Georgia Tech Facilities has a specific standard, preference, or methodology.

2.01 GENERAL REQUIREMENTS

A. The majority of construction on the Georgia Tech campus is permanent and must be designed for an expected life span of approximately 30 years without the need for major repairs and replacements.

B. Electrical systems must be designed with flexibility in mind so that the systems will accommodate changes in the electrical requirements of the occupants over the life of the building. Consider potential future alterations and additions and design the electrical system to minimize the need for future equipment upgrades and to facilitate future work with minimal outages.

C. Adequate space shall be allocated for proper and safe installation, operation and maintenance of electrical systems.

D. Electrical system reliability and power quality are critical to many research programs as well as the operation of many campus departments. Give proper consideration to these issues in designing electrical systems.

E. Design the work so that it is constructable with a minimum of outages in electrical, communications, fire alarm and security systems. Maintain critical applications in service during all work. Furnish, connect and operate temporary power systems if necessary in order to meet this requirement.

F. Where budgets are inadequate for the scope of electrical work as required by the project program and as outlined herein, notify Facilities Design and Construction of the condition and provide recommendations for reconciling the scope and budget.

G. Specify appropriate means of protection for surrounding areas, electrical equipment and fire alarm system components and wiring to minimize the disruption of campus activities and to minimize the loss of fire detection in campus facilities.

H. Physical arrangement of the electrical system and selection of equipment shall be designed to minimize the potential for EMI problems. Consider distances between system components and potentially sensitive areas. Choose equipment locations, equipment types and options, and wiring methods to minimize EMI. Employ EMI reduction methods such as shielding as needed.
I. Where equipment, fixtures, wiring and/or raceways are left unused by the work of the project, or where such items exist in the space and are not used by the project, remove all such materials to the fullest extent possible unless Facilities Design and Construction designates certain items to remain. Breakers in switchgear, switchboards and panelboards left unused shall be turned off and marked “SPARE”. Provide additional wiring, equipment and work as needed to accomplish the removal and to leave remaining equipment, fixtures, and wiring in service and operating.

3.01 CRITICAL APPLICATIONS
A. As used in this section, “critical applications” are those applications in which a failure would disrupt the operation of laboratories, clean-rooms, telecommunications head-end, CATV backbone, network backbone, voice over IP, campus computer resources, or utilities for such spaces or other essential areas or processes.

4.01 POWERING AND GROUNDING OF ELECTRONIC EQUIPMENT
A. Power systems associated with spaces in which electronic equipment will be used shall be designed in accordance with IEEE 1100-2005 as well as other requirements of this section. Such spaces include, but are not limited to laboratories, computer rooms and telecommunications rooms. The engineer shall be responsible for determining the characteristics of equipment to be connected or expected to be used in each space and shall design and specify the electrical system in accordance with the referenced standards.

5.01 CODES AND STANDARDS
A. All materials and work shall comply with the codes currently established by or adopted by the State of Georgia as well as standards and guidelines set forth by the Board of Regents of the University System of Georgia.
B. All materials shall comply with all applicable national standards. Materials shall be UL listed and labeled where UL listing is established for any specific product.
C. The physical execution of electrical work shall comply with applicable NECA National Electrical Installation Standards.

6.01 CONSTRUCTION DOCUMENTS
A. Provide complete construction drawings. Drawings must show the locations of all equipment and devices and must include branch circuit wiring and home runs including circuit numbers except for renovation projects in which circuit numbers cannot be reasonably determined after thorough field investigation. Schedules must be provided on the drawings for panelboards, switchboards, switchgear, motor control centers, dimming systems and lighting fixtures. All schedules shall be printed on the drawings. No schedules for electrical equipment or materials are to be printed in the specifications. Georgia Tech standard telecommunications details must be included for all telecommunications work. These details will be provided by the Georgia Tech Office of Facilities Design and Construction in AutoCAD format upon request.
B. Specifications must include Georgia Tech telecommunications specifications for all telephone, network and CATV work. These specification sections will be provided by the Georgia Tech Office of Facilities Design and Construction in WordPerfect format upon request.
C. Specifications shall be produced as a separate bound document except that specifications may be printed on the drawings for projects with construction budgets less than $40,000 subject to the approval of the Office of Facilities Design and Construction.
D. Specify coordination of Division 26 work with other trades including but not limited to HVAC system controls.
E. Place this note on all site drawings: “Contact Georgia Tech Utilities & Energy at 404-385-6000 for information regarding locate request. Submit completed locate request for Ga Tech owned utilities at least 72 hours prior to any excavation.”

7.01 TEMPORARY SERVICES

A. The contractor shall be responsible for establishing temporary service for use in construction projects. Temporary services may be obtained from Georgia Power where lines are accessible or may be obtained from Georgia Tech distribution facilities. Where Georgia Power service is used, the contractor shall make all arrangements directly with Georgia Power Co. Where temporary service is derived from Georgia Tech lines, the contractor shall provide and install all cable, conduit, transformers, metering and other equipment to derive the service from Georgia Tech lines. No existing Georgia Tech system transformer may be used for contractor temporary service. Revenue grade KWH metering is required and shall be furnished by the contractor. Submit plans for review by Facilities Design and Construction for each temporary service where connection to Georgia Tech lines is proposed. Such services shall not be constructed without approval from the office of Facilities Design and Construction. The work shall be arranged to avoid the addition of new splices to underground feeders. All costs of temporary service construction as well as the cost of electricity usage shall be the responsibility of the contractor. Temporary service facilities shall be completely removed at the completion of the project. Where vaults or manholes were cut for temporary service connections, remove conduits and patch holes with grout.

8.01 OUTAGES

A. Outage work affecting portions of the campus or building(s) not solely occupied by the contractor shall be scheduled after hours and on weekends and holidays. Such outages shall be requested in writing by the contractor and are subject to the approval of the office of Facilities Design and Construction. Requests shall be submitted at least three weeks prior to the start of the proposed outage.

9.01 TESTING AND CALIBRATION

A. All protective devices shall be calibrated, set and tested as a part of the construction contract. Device settings shall be in accordance with the Short-Circuit and Coordination study.

10.01 SECURITY OF ELECTRICAL EQUIPMENT

A. Where electrical equipment is located in spaces accessible to unqualified personnel including indoor and outdoor public spaces, and where equipment is not equipped with locks by the manufacturer, provide Best 7-pin interchangeable-core padlocks complying with the campus keying system and with shackle sizes to fit each application. Do not energize such equipment without padlocks in place. Examples of equipment requiring padlocks include, but are not limited to: safety switches, motor starters, contactors, generator set enclosures, medium-voltage distribution equipment, and transformer and switch vaults.

B. Electrical equipment which is not tamperproof shall not be located in spaces or areas which are accessible to unqualified persons.
11.01 DOCUMENTATION AND TRAINING

A. Complete documentation consisting of all operating and maintenance manuals for equipment installed as well as as-built prints, short-circuit and coordination study reports and arc-flash hazard study reports shall be delivered to the Owner. Use Georgia Tech transformer, cable, switch, and manhole numbers in identifying documentation and test reports.

B. Provide a report of protective device settings and copies of all test reports.

C. Provide training by a manufacturer's authorized service technician for switchgear, switchboards, fire alarm systems, variable frequency drives, lighting control and programmable dimming systems, engine-generator sets, and transfer switches. The contractor shall provide an orientation session for the Owner's personnel in which all aspects of the electrical system are addressed.

12.01 MAINTENANCE MATERIALS AND SPARE PARTS

A. New construction projects and major renovation projects shall include furnishing of at least one set of spare fuses for each type used in the project. Fuses shall be stored in a cabinet furnished by the contractor and mounted in the main electrical room.

B. Furnish one complete set of cables, equipment, software and access codes required for programming of lighting controls equipment, protective relays and trip units, metering equipment, and other equipment for which the means of programming is not integral to the equipment.

C. In addition to fire alarm system documentation and software required to be furnished to the Owner under NFPA 72, 2007 article 4.5.2, furnish one complete set of cables, equipment and software for programming of fire alarm control panels, fire alarm device addresses and fire alarm system DACTs.

D. Furnish one network protector relay control and programming pendant for each type of network protector relay installed.

E. Furnish one of each type of wrench, adapter and special tool needed in order to install, remove and manipulate each type of medium-voltage disconnectable splice, elbow connector and reducing tap plug or other accessory device installed.

13.01 COMMUNICATIONS

A. Telecommunications wiring systems including interior and exterior fiber optic, CATV, network and telephone shall be included. Georgia Tech maintains standard specifications and drawing details for these systems. The Engineer must use these standards and will receive details and specifications in AutoCAD and WordPerfect formats as needed for each project. Drawings and symbols shall be coordinated with the supplied Georgia Tech standards. See section 270500.

B. Provide separate telephone lines for each elevator telephone set and emergency telephone. Provide two separate telephone lines for fire alarm system DACT. Provide network ports for building control system equipment and card access control equipment.
C. Provide at least 3 weeks’ notice to the Owner in advance of the need for telephone service at elevators and fire alarm system DACTs. For new construction, provide 6 weeks’ notice in advance of the needed service dates.

D. Keep backboards free from conduits and cables other than telecommunications cables.

END OF SECTION
260513 Medium-Voltage Cables

1.01 SCOPE

A. This Section includes the following:
 1. Medium voltage cables
 2. Medium voltage cable terminations
 3. Medium voltage cable transition modules
 4. Medium voltage cable splices
 5. Junction bars
 6. Medium voltage cable testing

B. This Section is directed primarily at campus 19.8kV electrical distribution. For projects that involve medium voltage cables in other voltage classes, the same requirements shall apply, however, voltage classes and BIL shall be edited as needed.

2.01 CONTRACTOR QUALIFICATIONS

A. The following requirements are mandatory and shall appear in the project specifications. No contractor shall be permitted to handle, install, splice, terminate or test medium voltage cables without satisfying these requirements.

1. The contractor or sub-contractor directly responsible for the receiving, handling and installation of medium voltage cable shall have had at least three years’ experience in performing similar work in underground ductbank and manhole systems. Submit references consisting of project names, dates and contact person names and telephone numbers for at least three similar projects within the past three years. Projects used as references must include the installation of medium voltage cable of the 25kV class or higher in underground ductbanks and manholes. URD or other work not involving ductbanks and manholes will not be accepted.

2. The contractor shall the submit proof that the each cable splicer has had at least three years’ experience in splicing EPR and PILC cables rated in the 25kV voltage class. This proof is required before any splicing may proceed and shall consist of at least three references with contact names and phone numbers. Where PILC splices or terminations are required, references shall include at least three projects in which PILC splices or terminations were made.

3. Proof-testing of medium voltage cable and terminations is required as part of the work under this contract and shall be performed by a qualified electrical service and testing company. The contractor shall arrange for and pay for cable testing services and shall include the costs in his bid. The service and testing company shall be one which performs electrical testing services including testing of medium voltage cable as a regular component of its business and which has been in the business of testing medium voltage cables for at least three years. The service and testing company shall not be a part of any business entity responsible for the supply and installing medium voltage cable under this contract. All test results shall be certified by an electrical engineer employed by the testing company. The engineer shall interpret the results and shall sign each test report. Test equipment used shall have been calibrated within the 12 month period immediately
preceding the test date. Certification of calibration within this time period is required and shall be furnished with the test reports. Test reports furnished without this certification or tests made with equipment without the required certification are invalid and will not be accepted.

3.01 MEDIUM VOLTAGE CABLE

A. Cable and qualification testing shall comply with the latest editions of ICEA S-93-639 / NEMA WC74, AEIC CS8, and UL 1072.

B. Medium voltage cable used as feeder cables and loop cables shall be 500MCM copper, type MV-105 133% insulation level, with 345 mil EPR insulation, copper tape shielding and an overall PVC or polyethylene jacket. Where existing duct sizes will not permit 133% insulation level cables, 100% insulation level, 260 mil EPR shall be used. Laterals from loop switches to padmounted transformers shall be 2/0 or 4/0 copper, type MV-105 similar to feeder cables. EPR cables shall comply with the latest editions of ICEA S-93-639 / NEMA WC74, AEIC CS8, and UL 1072.

C. Some of the existing feeders are PILC. In general, PILC is not to be installed in new work except that in certain cases, PILC may be desirable in order to minimize the need for transition splices. Where required, PILC cable shall be 3 conductor compact sectored 500 MCM copper, type H with high viscosity polybutene impregnant and an overall PVC jacket.

D. Apply arc-proofing materials to new cables where exposed in manholes and vaults and to portions of existing cables exposed in manholes and vaults where splicing occurs during the work of the contract. Three phases and ground conductor of one feeder, loop cable or lateral shall be arc-proofed together except that cables shall be broken out and individually wrapped at splices and terminations. Apply in one layer, half-lapped except as recommended by the manufacturer. Binder tape shall be as recommended by the manufacturer.

E. Where cables are spliced in manholes, rack cables fully across all manhole walls plus additional length to continue to ductbank entrances. Install splices at locations within manholes to permit future replacement of splices by cutting and re-racking the affected cable along a shorter path through the manhole. Where cables pass through manholes unspaced, rack along the longest route through the manhole. Coordinate pulling operations so that all phases and the ground conductor for each feeder or lateral are grouped tightly together and rest properly on cable support arms. Where cables are spaced, cut cable lengths such that the splices will occupy a minimum of space and such that cables and splices rest properly on cable support arms.

F. Medium voltage cables, splices and terminations installed in vaults shall not obstruct access for switch operation (from grade) or access for transformer and network protector removal and installation.

G. Label cables as described in Section 260553.

H. Phasing at existing equipment shall not be changed by the work of the project.
4.01 HANDLING OF MEDIUM VOLTAGE CABLES

A. These requirements are mandatory and shall appear in the project specifications.

1. Medium voltage cables shall be handled as specified herein and in accordance with the manufacturer's instructions. Where similar work is addressed by the manufacturer's instructions and in these requirements, the more stringent requirement shall apply.

2. Medium voltage cables shall be inspected on receipt for the presence of moisture. Cables found to contain moisture shall be replaced or dried as specified herein. Install cable end seals immediately on receipt of dry cable or immediately following drying operations.

3. Medium voltage cables shall be protected from the entrance of moisture during pulling operations.

4. Install cable end seals immediately following any cutting or pulling operation. Cables found without end seals in place shall be purged as specified herein. Cable end seals shall be heat-shrink type cross-linked polyolefin end caps with internal factory-applied hot-melt adhesive mastic. Cable end seals shall be designed for direct burial in accordance with ANSI C119.1, 1986. Cable end seals shall be equal to Raychem type ESC.

5. Reels shall be shipped upright and stored upright in locations where the flanges will not sink or otherwise allow weight to rest on the cable's surface. Reels shall not be laid on sides.

6. Reels shall be lifted by a shaft through the arbor holes or by cradles or forks oriented perpendicular to the flanges and contacting both flanges. Under no circumstances may any lifting device be allowed to contact cable surfaces.

7. Where reels are rolled, secure cables and roll in direction to prevent loosening of cables on reels. Apply force only to reel flanges.

8. Exercise care in all phases of cable handling and installation to prevent deformation, abrasion, and other damaging effects.

9. Medium voltage cables shall not be bent sharper than the greater of the manufacturer’s recommendation or 12 times the cable outside diameter. Care shall be exercised to prevent damage to the cable sheath, conductor or insulation due to nicking, excess pulling tension, or deformation. Where cables are bent at a smaller radius than that specified, the affected cables shall be replaced by the Contractor at no additional expense to the Owner.

10. Where cables are to be pulled through manholes or enclosures, sheaves of suitable radius shall be used to prevent bending the cables sharper than the minimum specified above. Conveyor sheave assemblies having at least one roller for each 20° of bend are acceptable.

11. Medium voltage cables shall be pulled with a swivel and manufactured cable pulling eyes attached to the conductors. Basket grips shall not be used.

12. Where mishandling occurs or where evidence of mishandling is found, the affected cables shall be replaced by the Contractor at no additional expense to the Owner. Any cables not handled in accordance with these specifications and the referenced documents shall be considered to be mishandled.
13. Medium voltage cables found to contain moisture or left unsealed shall be dried by purging with dry nitrogen having a dew point of -60°C. Purge cables for a minimum of 6 hours for shields and 6 hours for conductors from one end with an indicating desiccant and bag in place at the other end. Purge cable shields and cable conductors separately. Repeat cycle as necessary to prove dryness. Cables shall be purged for as long as necessary to achieve this requirement. Cables will be accepted as dry when desiccants show no indication of moisture after a continuous 6 hour run. Cable purging shall comply with the cable manufacturer’s instructions. Cables requiring drying shall be purged at no additional cost to the Owner.

4.01 MEDIUM VOLTAGE CABLE SPLICES AND TERMINATIONS

A. Use elbow splices where space limitations permit. Use elbow or disconnectable splices as required for changes in wire size. Otherwise, use non-disconnectable splices. No more than four elbow splices or two elbow Y-splices should be installed in any manhole, however, each case shall be evaluated based on actual conditions and splice locations. Indicate splice types and locations on drawings prior to construction.

B. The number of splices shall be minimized. Select splice points as needed to facilitate cable installation and as needed for taps and connections. Place splices at locations within manholes to permit future replacement of splices by cutting and re-racking the affected cable along a shorter path through the manhole. Where cables pass through manholes un-spliced, rack along the longest route through the manhole where space limitations permit.

C. Connector bodies, terminators, connecting plugs, dead-end caps, elbow arresters and other molded components shall be grounded by means of bare copper drain wires sized not less than #14 AWG. Provide larger conductors where recommended by the component manufacturer. All drain wires shall be connected to the same grounding conductor that is used to bond the cable shields. Connections shall be made with UL listed connectors suitable for the application. All such connectors used in below-grade enclosures shall be suitable for direct burial.

D. Aerial Terminations

1. Cable terminators shall be engineered kits designed to meet class 1 requirements and be design proof tested per IEEE 48, 1990. Kits shall accommodate commercially available, environmentally sealed connectors. Kits shall consist of non-tracking outer insulations, stress relief, and environmental sealing and shall be either heat-shrink or molded rubber types. Provide skirted outdoor type terminations. Terminators shall be equal to Raychem type HVT, 3M type QT II, 5690K series or Elastimold type 35MTG. Provide environmentally sealed threaded studs and universal aerial lugs for each cable termination.

2. Terminators shall be rated for 25kV grounded systems and 125kV BIL.

E. Dead-Front Terminations and Elbow Splices

1. Terminations for dead-front equipment shall be separable insulated connectors consisting of a modular dead-break cable terminating system complying with IEEE 386. Disconnecting single-pole cable terminators and matching, stationary, bolted and plug-in, dead front terminals shall be designed for cable voltage and for sealing against moisture.

2. Elbow splices and dead-break cable terminators shall be elbow-type units with 600A continuous current rating, designed for de-energized disconnecting and connecting;
coordinated with insulation diameter, conductor size, and material of cable being terminated.

3. 200A interfaces are not adequately rated for the available short circuit currents on the campus 19.8kV system and are not acceptable for general use. In applications other than campus electrical distribution and where necessary, provide 200A interfaces at existing equipment having 200A bushings, where provisions for grounding elbows is required, and where deadfront elbow arresters are required. 200A elbows and bushing inserts shall be 200A loadbreak type. Consult with Facilities Design and Construction before using 200A interfaces.

4. All 200A and 600A connector bodies shall have capacitance coupled test points.

5. Terminations and splices shall include all components necessary for complete and proper installation including, but not limited to bushings, connecting plugs, basic insulating plugs, caps, studs, shield grounding kits, cable lugs, cable adapters and elbows.

6. Shield grounding kits shall provide environmental sealing or separate environmental sealing means shall be provided.

7. Dead-front terminations and elbow splices shall be fully shielded and shall be suitable for submerged operation.

8. Ratings of elbow connectors shall be 15.2kV continuous operating voltage, 125kV BIL and in accordance with IEEE 386.

F. Disconnectable Splices

1. Disconnectable splices shall be separable straight or wye configurations as required.

2. Assembled disconnectable splices shall be fully shielded and suitable for submerged operation.

3. Shield grounding kits shall provide environmental sealing or separate environmental sealing means shall be provided.

4. Disconnectable splices shall utilize compression connectors on each associated cable. Connectors shall be connected to a common bus or directly to each other by means of a bolted joint. Provide fully insulated, submersible caps for any unused connection points of any splice body.

5. Disconnectable splices shall be equal to Elastimold 600 Series deadbreak separable cable joints. Where necessary due to space limitations, Elastimold 600 series “Vault-Stretcher” may be used.

6. Provide one set of all special tools required in order to assemble and disassemble disconnectable splices. Deliver special tools to the Owner’s Representative.

7. Non-disconnectable Splices

8. Non-disconnectable splices shall be factory engineered kits which provide insulation, shielding, ampacity, and water immersion capabilities of the original cable. When assembled, the splices shall be capable of passing the electrical test requirements of IEEE 404, and water immersion tests of ANSI/IEEE 386. Non-disconnectable splices shall utilize only compression connectors with no current-carrying bolted joints.
G. Junction Bars

1. Welded copper bus conductors with shielded molded EPDM rubber or cast silica based thermosetting resin insulation, IEEE 386 compliant interfaces and stainless steel mounting brackets. Junction bars shall be designed for submerged operation.

2. 600A continuous current rating, 25kV, 125kV BIL.

3. Equipped with stainless steel parking stands.

4. Configurations (in-line, stacked, etc.) and number of connection points as required and as noted or shown. Furnish three-phase units where space does not permit single-phase units.

5. Junction bars shall include grounding provisions.

H. Cable Transition Modules and Transition Splices

1. Transitions from PILC to solid-dielectric cables shall be accomplished with cable transition modules except that Facilities Design and Construction may require transition splices as described below where splicing room is limited. Cable transition modules shall be as manufactured by Patton and Cooke and shall be in accordance with the following:

2. Cable transition modules shall have three bushings for ANSI/IEEE 386 compliant separable dead-break connectors and provisions for terminating PILC cable within a bolted metallic housing sealed to the PILC cable sheath(s) with a lead wipe(s). Cable transition modules shall be submersible units manufactured specifically for connecting PILC to solid dielectric cables.

3. Separable connectors for the connection of solid dielectric cables shall be 600A dead-break type as specified in other parts of this section.

4. Cable transition modules shall consist of a cast silica-based thermal setting resin, vacuum-cast and having an encapsulated copper ground screen below the module surface. Bushings shall be equipped with grounded external metallic rings. All studs and inserts including those for attachment and mounting bolts shall be bonded to the internal ground screen. PILC cable terminating space shall be enclosed by a bolted and gasketed metallic housing equipped with a wiping sleeve (3-conductor PILC cable) or set of three sleeves (single-conductor PILC cable) and means for filling with potting compound. Potting compound shall be as recommended by the manufacturer for the intended use.

5. All current carrying parts shall be fabricated from high-conductivity copper. The primary current path for each phase shall be a solid copper bar.

6. Cable transition module ratings shall be:

 a. 25kV voltage class, 26.6kV maximum operating voltage phase-to-phase, 15.2kV maximum operating voltage line-to-ground.
 b. 600A continuously
 c. 125kV BIL
 d. 40kV AC 1 minute withstand
 e. 78kV DC 15 minute withstand
 f. 19kV corona extinction level min. at 3pC sensitivity
 g. Short-time current withstand of 25kA for 0.17s
7. The insulation shield shall meet the resistivity stability requirements of IEEE 592-1990. The manufacturer shall furnish prototype test data to prove compliance if requested by the Engineer.

8. Mount cable transition splices with the manufacturer’s bracket designed for the application. Furnish galvanized steel brackets designed to position transition splices as shown or noted on the drawings. Where no other direction is given, furnish brackets to mount splices horizontally on manhole and vault walls and with bushings for separable connectors angled 45° from vertical, away from the wall.

I. Where Facilities Design and Construction determines that insufficient space exists for the use of cable transition modules, transition splices shall be as described in this paragraph. PILC splices shall be fabricated from manufactured kits including lead sleeves, insulating compound, tapes, connectors, oil stops and all other necessary materials. Splices with heat shrink or other outer coverings will not be acceptable. All splices must be completely enclosed in lead sleeves sealed to the cable sheaths with lead wipes. Connectors used in splices shall be compression type with tapered ends and brazed plug oil stops. Solder type connectors with similar oil stops are also acceptable. Splices shall be designed to maintain the full current carrying rating, insulation level and temperature rating of the cable being spliced. Potting compounds shall be as recommended by the manufacturer the intended use.

J. PILC Splices
 1. Splices shall be fabricated from manufactured kits including lead sleeves, insulating compound, tapes, connectors, oil stops and all other necessary materials. Splices with heat shrink or other outer coverings and without lead sleeves will not be acceptable. All splices must be completely enclosed in lead sleeves sealed to the cable sheaths with lead wipes. Connectors used in splices shall be compression type with tapered ends and brazed plug oil stops. Solder type connectors with similar oil stops are also acceptable. Splices shall be designed to maintain the full current carrying rating, insulation level and temperature rating of the cable being spliced. Potting compounds shall be as recommended by the manufacturer the intended use.

5.01 MEDIUM VOLTAGE CABLE TESTING

A. After cable has been installed and terminated but before equipment is connected, a DC high potential test at 80% of factory test voltage shall be performed. Where terminations have DC withstand ratings less than 80% of factory cable test voltages, test cables at the DC withstand voltage and time rating of the terminations. Test voltage shall be applied between the phase conductor and grounded metal shielding for a period of ten (10) minutes. DC micro-ampere (μA) readings shall be taken at one (1) minute intervals during the test. If during the ten (10) minute test readings are erratic or indicate an increase in current the cable shall be considered defective. Cable found to be defective shall be repaired or replaced and the test repeated, at NO additional expense to the Owner. Three (3) copies of these test results and one copy of the test equipment certificate of calibration shall be furnished to Facilities Design and Construction one week prior to the proposed connection of cables to the Owner's electrical distribution system.
B. Test equipment used shall have been calibrated within the 12 month period immediately preceding the test date. Certification of calibration within this time period is required and shall be furnished with the test reports. Test reports furnished without this certification or tests made with equipment without the required certification are invalid and will not be accepted.

C. All test results shall be certified by an electrical engineer employed by the testing company. The engineer shall interpret the results and shall sign each test report.

END OF SECTION
260519 Low-Voltage Electrical Power Conductors and Cables

1.01 SCOPE
 A. This Section includes requirements for conductors and cables used in power systems rated 600V and less.

2.01 BRANCH CIRCUITS
 A. Except as permitted below, 120V receptacle circuits shall include individual neutrals. Do not install 120V receptacles on multi-wire branch circuits except as permitted below.
 1. Exception: Shared neutrals are acceptable in manufactured wiring systems in modular furniture. Such circuits shall comply with NEC 210.4 and 240.15(B).

3.01 CABLES
 A. MC cable shall be used for certain VFD applications as described in Section 262923.
 B. MC cables may be used for fixture whips.
 C. MC cable shall not be used for feeders within Critical facilities.
 D. Wire in conduit is the preferred wiring method for general use. MC cable is acceptable where necessary for cost savings.

4.01 MANUFACTURED WIRING SYSTEMS
 A. Manufactured wiring systems are not acceptable except within modular partition systems.

5.01 CONDUCTORS
 A. Use only copper conductors, #12 AWG minimum for power wiring except that fixture whips may be smaller as permitted by the NEC.

6.01 CABLES
 A. MC cables used to connect motors to variable frequency drives as required by Section 262923 shall have continuous corrugated aluminum sheath and three symmetrical grounding conductors.

7.01 INSTALLATION
 A. Comply with NECA 1.

END OF SECTION
260526 Grounding and Bonding for Electrical Systems

1.00 SCOPE
 A. This Section contains requirements for grounding and bonding in low and medium-voltage power systems.

2.00 BUILDING GROUNDING SYSTEM
 A. All grounding conductors shall be copper.
 B. Include a grounding conductor other than the raceway in all feeders and branch circuits except that the main feeder(s) in feeder-supplied buildings are not required to include a grounding conductor.
 C. Provide a ground riser for telecommunications MDF and IDF(s). Provide a ground bar on each backboard.
 D. In buildings with 480/277V main feeder(s) and without conductive metal framing, provide one or more electrical system common grounding electrode conductors near 480V distribution panels to facilitate grounding of multiple separately derived systems. Grounding system riser size shall be at least 3/0 copper.

3.01 MEDIUM-VOLTAGE CAMPUS DISTRIBUTION SYSTEM GROUNDING
 A. All grounding conductors shall be copper.
 B. A 600V insulated ground conductor shall be installed with each set of feeder cables and lateral cables. Feeder, loop and lateral grounds shall be racked with associated phase cables. The manhole ground rings shall not be used as feeder, loop or lateral ground conductors.
 C. Provide a bare copper ground conductor around the inside perimeter of each manhole and transformer or switch vault approximately 6” above the floor. The ground ring shall be secured to the manhole or vault wall, connected to form a ring and connected to a minimum of two 1/2”x10’ ground rods driven through holes at opposite sides of the manhole floor. Provide a ground ring around transformer and switch vaults.
 D. Bond all cable shields, splices, feeder and lateral grounds, racking, cover frames, grates and other metallic parts to manhole and vault ground rings and pad-mounted equipment grounding electrode conductors.
 E. Grounding at medium-voltage transformer locations should not be an extension of the building grounding electrode system. Provide a separate grounding electrode system at the transformer location.
 F. Where pad-mounted or subsurface equipment is located within 10’ of other pad-mounted or subsurface equipment, a common grounding system shall be used.

4.00 CONDUCTORS
 A. All grounding system conductors shall be copper.
 B. Grounding conductors for medium voltage distribution system applications shall be no smaller than 2/0.
 C. All below-grade and subsurface connections shall be exothermic welds (CadWeld or equal) or compression connectors listed for direct burial. This requirement applies to buried connections as well as connections made in subsurface manholes and vaults.

END OF SECTION
260533 Raceway and Boxes for Electrical Systems

1.00 SCOPE

A. This Section includes requirements for indoor and outdoor conduits and raceways.

B. Conduits to be for underground medium-voltage campus electrical distribution circuits are addressed in Section 260543 “Underground Ducts and Raceways for Electrical Systems”.

2.01 CONDUIT AND RACEWAY

A. Conduits for interior use where concealed, where exposed in unfinished areas such as mechanical rooms and for exterior use shall be EMT, IMC or RGS. EMT is not permitted where subject to physical damage. EMT is not permitted where exposed to weather or in similar applications in which the conduit will be exposed to water. Power wiring at the Holland central plant and at the 460 10th St. Cooling plant shall be in RGS except that below-grade work shall be as specified below. IMC shall not be substituted for RGS for work at the Holland and 460 10th St. plants.

B. Conduits for below grade work shall be PVC schedule 40 or schedule 80 or RGS with plastic or mastic coating. Service entrances, main feeders, telecommunications services and medium voltage power conduits shall be concrete encased. Transition to other conduit types within the encasement where conduits emerge from concrete encasement.

C. Exposed raceways in finished areas shall be used only where concealment of conduits is not possible or where required by project programs (such as lab applications). Surface raceways shall metallic and shall not be smaller than Wiremold 500.

3.01 LOW-VOLTAGE SUBSURFACE BOXES

A. Where low-voltage wiring systems require boxes to be placed in grade, such boxes shall be handholes as specified in Section 260543. Metallic boxes and PVC boxes are not acceptable for subsurface installation.

4.01 INSTALLATION

A. Comply with NECA 1 and NECA 101.

END OF SECTION
260543 Underground Ducts and Raceways for Electrical Systems

1.01 SCOPE

A. This Section includes ductbanks, manholes, handholes and vaults for campus electrical and telecommunications distribution systems.

2.01 DUCTBANKS

A. Ductbanks shall consist of round PVC conduits encased in concrete.
B. Provide longitudinal reinforcement as a minimum. Provide additional reinforcement where necessary.
C. Conduits shall be 6" diameter for power, 4" for telephone 2" for CATV and 4" with innerducts or 2" for network. Ductbanks for each system are generally to follow the same routes and utilize co-located manholes. Conduits 4" and larger may be PVC schedule 40 or PVC type DB-60. Conduits smaller than 4" shall be PVC schedule 40.
D. Provide at least one spare conduit of each type in all ductbanks. See Section 270500 for additional telecommunications ductbank requirements.
E. Use only manufactured bends. Field bends are not acceptable. The minimum bending radius for conduits shall be 36" for conduits 4" and smaller. Bending radii for conduits larger than 4" shall be 48" where conduits turn up at padmounted equipment and at manhole entrances. All other bends shall be 12'-6" radius. Show ductbank bends to scale and design ductbanks to minimize pulling tensions. Do not place short radius bends (48" radius) at both ends of ductbank segments with conduits larger than 4" terminating at a manhole or manholes. Manholes shall be placed at intervals not exceeding 400 ductbank feet, at ductbank segment intersections and as needed to limit pulling tensions to a safe value. Calculate pulling tensions and sidewall pressures for each ductbank. Provide manholes as needed and arrange ductbanks to ensure that excessive pulling tensions and sidewall pressures will not occur during the installation or future replacement of cables.
F. Provide 200 lb tensile strength pull line in all spare power ducts. Provide metered (feet) pull tapes in all telephone and network ducts. Plug all unused ducts with mechanical compression duct plugs, O-Z/Gedney type CSB or equal.
G. Ductbanks shall enter manholes horizontally through end bells or duct terminators having a smooth radiused edge. Where necessary, manholes shall be core-drilled and ducts shall be grouted in place. Duct terminators and end bells shall be set flush with the interior manhole face. Grout rebar into manhole walls or provide other equivalent means to ensure that ductbanks will remain properly aligned and attached to manhole faces. Specify vertical elevations of duct entrances in manholes on the plans such that future duct entrances in affected and adjacent manholes can be installed without undue interference between ductbanks. Where ductbanks cannot be arranged to permit future additions, provide spare horizontal ductbank stubs from affected and adjacent manhole faces to accessible locations. Document stubs on as-built drawings, install locator wires in the encasement and mark the capped ends of stubs with metallic markers composed of not less than 3’ of 2” RGS conduit each buried vertically at the end of each stub. Leave 1’ of exposed conduit and rebar at ends of stubs. Wrap buried stubs in 20 mil polyethylene. Ductbanks shall not enter the ceiling or floor of manholes. Duct entrances shall be not less than 1’ above manhole floors and shall enter only at the designated duct entrance areas as described in “Manholes” below. Ductbank entrances in handholes shall be as described in “Handholes” below.
H. Encasement shall be 3" over all conduits. Power and communications conduits shall be separated by at least 6" of concrete. Conduits of the same system shall be separated by at least 2". Support conduits on spacers. Anchor and tie conduits to prevent displacement when concrete is poured. Pour against undisturbed fill and trimmed trench walls or forms as needed. Vibrate concrete to eliminate voids. Do not allow excess concrete to be disposed of in trenches. Ductbank encasement dimensions shall not exceed the minimum necessary for encasement as specified in this section.

I. Maintain a positive slope of 4" (min) per 100' towards manholes for all ducts entering manholes.

J. Telecommunications ductbanks shall include a #6 insulated copper locator wire. The locator wire shall be accessible in manholes and handholes.

3.01 MANHOLES

A. Manholes shall be precast concrete sized as specified below and with round precast concrete riser sections. Riser sections shall have an inside diameter of 42". Frames and covers shall be round, cast-iron with a clear opening of 36" diameter. Precast sections shall be sealed at joints with an adhesive sealant strip. Riser sections shall be similarly sealed. Provide cover logos "ELECTRIC" or "COMMUNICATIONS" as appropriate for each type. Access openings and risers shall be centered within manholes except that off-center access openings and risers will be permitted as needed to coordinate with the surrounding features on grade or with other utilities. Where access is not centered, no part of the access opening shall be closer than 1' to any manhole wall. All risers shall be vertical with no offsets. Frames shall be aligned with risers and/or manhole top slab access opening.

B. Manholes shall be a 4-way type having four 2'-10" wide duct entrance walls and four 6' wide splice walls creating a roughly octagonal structure. Wall widths are inside dimensions. The interior height shall be at least 7'. Ductbanks shall enter only in duct entrance walls (the 2'-10" wide walls) and in accordance with the requirements stated in “Ductbank” above.

C. Rectangular manholes having inside dimensions of 6' x 12’ or 16’x at least 7' high may be used with specific permission from the Georgia Tech Office of Facilities Design and Construction. This alternate design will not be permitted except where site conditions dictate its use. Allowable ductbank entrance areas are centered horizontally in the end walls (the 6' wide walls) and within 30" horizontally of each end of the side walls (the 12’ or 16’ walls). Ductbank entrances shall comply with the requirements stated in “Ductbank” above.

D. Provide a pulling iron in the floor opposite each allowable duct entrance area (minimum of four pulling irons per 4-way manhole and six pulling irons per rectangular manhole). Provide additional pulling irons as needed.

E. Floors shall be sloped to drain to 12" round or square drain holes with cast-iron frames and grates. Drain openings, frames and grates shall be located directly below manhole access openings above.

F. Manholes shall be installed on leveled and compacted gravel beds at least 6" thick. Setting depths shall be selected to limit riser sections to 4’ or less overall (manhole interior ceiling to grade). Additional manhole interior height shall be provided as needed to accommodate ductbanks.

G. Provide vertical galvanized steel racking from 6" above the floor to 1' below the ceiling on 42" centers on each splice wall: 2 per wall in 4-way manholes, and 3 per 12' wall and one with corner brackets per corner in each rectangular manhole. Furnish a minimum of (2) 10" cable
arms with porcelain insulator blocks per rack in electric manholes. Furnish a minimum of (3) 7" cable arms with porcelain insulator blocks per rack in communications manholes.

H. Power cables shall be secured to cable support arms in manholes with non-conductive cable ties and shall be covered with fireproofing tape for the entire exposed length. Tag cables as specified. Show equipment numbers on the plans.

I. The contractor shall pump and clean new and existing manholes as needed to accomplish the work and as needed to allow inspection.

J. Telephone and network ducts shall not enter electric manholes. Electric ducts shall not enter communications manholes.

K. Adjacent manholes shall be placed such that ductbanks may enter each manhole through all of the four ductbank entrance walls in each manhole without interference from adjacent manholes or other ductbanks.

L. Manholes locations shall be chosen to avoid placement of access covers in heavy traffic areas, within parking spaces or where subject to significant surface water.

M. Each interior ductbank entrance face shall be marked within each manhole to indicate the manhole number and the general direction of each face. Labels shall indicate North, South, East, West or Northeast, Southeast, Southwest, Northwest to represent the general direction in which the observer would be looking when viewing each ductbank entrance wall from within the manhole. Use standard abbreviations for the directions listed and select those that best match the installed orientation of each manhole.

4.01 NETWORK TRANSFORMER VAULTS

A. Transformer vaults for network transformers shall be concrete structures. Vaults shall be designed to allow sufficient working space as well as to facilitate the operation, removal and installation of transformers, network protectors, and primary switches. Grates and other metallic components such as steel framing and ladders shall be grounded.

B. Vaults or other transformer areas shall be designed to allow NEC and NESC working space as well as to facilitate the operation, removal and installation of transformers, network protectors, and primary switches.

C. Provide lift-out hatches as access for installing and removing network transformers. Hatches above transformers shall be solid or shall have internal baffles to deflect precipitation and falling debris. Concrete hatches shall have threaded lifting points with flush brass plugs. Provide one set of lifting eyes to the Owner. Provide hatches directly over each transformer sized to admit network transformers of the sizes to be installed plus adequate clearance at all sides. No framing or other components shall obstruct access for transformer removal or installation.
D. Provide grates in vault tops at each end of vault and between transformers. Grates shall be sized to provide adequate cooling capacity for all installed transformers and any future transformers. Grates nearest to network protectors shall be large enough to pass network protector breaker assemblies. Grate sections shall be secured by flush bolts and shall be designed to be readily removed and reinstalled. Grate sections above ladders shall be 36" wide x 30" deep. Grate sections above ladders shall be hinged and shall have lift assist devices and flush padlocking provisions.

E. Grates shall be secured to steel framing with means for removal without requiring metal cutting. Bolted retainers are preferred. Operable doors and access hatches shall be secured with Best 7-pin interchangeable-core padlocks.

F. A fixed pull-up access ladder shall be attached to the vault wall below a grate at each end of each vault (two ladders and personnel access grates per vault). Pull-up ladders shall be equal to Layne International polypropylene vault ladder with pull-up handrail.

G. Provide sumps and sump pumps in vaults. Sumps shall be sized to accommodate pump(s) and to prevent standing water on the floor of the vault. Provide grates over sumps to prevent misstep or injury to maintenance and repair personnel. Pipe sump pump discharge to drains. Pump discharge shall be equipped with check valve and gate valve. Pumps shall have automatic float switches and oil-sensing controls to prevent discharge of spilled oil into the sewer system. All portions of the supply wiring below the top rim of the vault shall be designed to be submersible. A pump circuit disconnecting means shall be placed above grade near the vault. Disconnecting means shall be secured by padlocking. Provide lockable devices or lockable enclosures as needed. Disconnecting means shall be permanently identified.

H. Transformers shall be elevated on 6" high concrete curbs sized to match transformer tank bases.

I. Transformer vaults shall be located such that they will be accessible to vehicles and equipment capable of lifting hatches, transformers, switches and network protectors without causing undue damage to landscaping and surfaces.

J. Transformer vaults shall not be located in low areas or in other locations in which they will be likely to accumulate water.

K. All primary and secondary cables in transformer vaults shall be securely racked on cable support arms with porcelain insulator blocks and tied with UV resistant non-metallic cable ties. Cables shall not obstruct access to any cable terminations, switch operating handle (from grade), climbing space at ladders, working space or space for removal of transformers or network protectors. Primary cables shall be covered with fireproofing tape wherever cables are exposed within a vault.

L. Provide a 1" conduit from each vault to the associated electrical equipment room. Cap the conduit and label for future use.

M. All conduits entering and exiting transformer vaults shall be arranged to prevent the migration of water to and from manholes as well as the migration of water into the building. Conduits should enter high in vaults and shall be sealed with bolted mechanical compression seals to prevent water from entering.

N. A typical vault arrangement drawing is available from Facilities Design and Construction on request.
5.01 SWITCH VAULTS

A. Switch vaults shall be concrete structures with sectioned, removable covers. Operable doors shall be provided over switch operating shaft areas, viewing windows, trip unit and fault indicators. Cover sections and framing design shall be planned such that the structure can be detached, disassembled and removed by hand without requiring machinery for lifting. Top structures shall be designed such that framing members are laid on supports and do not depend solely on bolted attachments for support. This is to ensure that when framing members are unbolted for future removal, that they are effectively safeguarded from dropping into the switch vault.

B. Switch mounting arrangement for S&C Vista shall be similar to that shown in S&C bulletin 681-51 except that cable chamber covers and framing shall be sectioned to facilitate removal and handling. Provide flush padlock pockets for all operable covers, hatches and doors. Mounting arrangements for other switch types shall be developed by the engineer as needed and shall incorporate workspace and access similar to that required for S&C Vista.

C. Switches shall be mounted at the top of the vault. Switches shall be operable from grade using the manufacturer’s standard operating handle. The contact viewing windows shall be located facing up and not more than 1’ below the top surface of the vault. Viewing windows shall have protective covers. Access to switch operating means and contact viewing windows shall be secured immediately below hinged solid padlocked doors in the vault top. Doors shall be provided with internal lift assist mechanisms and flush padlocking provisions.

D. Show switch mounting arrangement and the arrangement of cables and equipment on the plans. Plans shall be sufficiently detailed as to indicate all clearances, materials and the methods of attachment. Plans shall indicate the switch specified as the basis of design. Where alternative switches are accepted as equal, the plans shall be revised as needed to accommodate the alternate switch and shall be submitted for approval by the Office of Facilities Design and Construction.

6.01 HANDHOLES

A. Handholes may be installed in small telecommunications ductbanks and for low-voltage power circuits such as outdoor lighting circuits. Handholes shall not be installed in medium-voltage systems.

B. Where handholes are used for telecommunications work, handholes shall be at least 17"x30"x18" deep and shall have cover logo “COMMUNICATIONS”. Furnish larger sizes and stacking sections as needed. Handholes shall allow adequate space for cable bending. Furnish cable racks, arms and insulators where handhole dimensions exceed 17"x30" and are over 18" deep.

C. Where handholes are used for electrical work, they shall be 12"x12"x12" deep or larger and shall have bolted covers with cover logo “ELECTRIC”. Handholes shall not be used for medium voltage circuits.

D. Handholes over 36" in length shall have cable racks installed on all walls 36" long and longer. Provide two racks per wall at approximately 1/4 of the wall length from each end. Furnish cable arms as needed to support installed cables.

E. Handholes shall be gray polymer concrete with gray polymer concrete covers. Furnish Quazite type PG or equal. Handholes shall be UL listed with loading tier as appropriate for the intended application. Where handholes are not protected from vehicular traffic, furnish handholes suitable for AASHTO H-20 loading (Quazite Tier 22).
F. Handholes shall be open-bottom. Ductbanks containing only four or fewer 2" conduits may enter handholes through partial ells stubbed just inside handhole walls from below. All other ductbanks shall enter horizontally through drilled holes in handhole walls. Mouseholes are not acceptable. Furnish stacked sections as needed for the required depth. Handhole depths shall not exceed the lesser of 42" or the length of the handhole.

G. Install handholes on leveled and compacted 4" deep (min) gravel beds.

END OF SECTION
260553 Identification for Electrical Systems

1.00 SCOPE

A. Marking, tagging and identification for the following equipment and systems:
 1. Campus Electrical Distribution System
 a. Feeder Cables
 b. Loop Cables
 c. Lateral Cables
 d. Transformers
 e. Switches
 f. Manholes
 2. Low-voltage and medium-voltage building electrical systems
 a. Electric Meters
 b. Main Breakers, Main Switches
 c. Low-voltage and medium-voltage in-building distribution equipment

1.01 CAMPUS ELECTRICAL DISTRIBUTION SYSTEM CABLETAGGING

A. Cables are categorized by the following terms:
 1. FEEDER CABLE – A medium voltage cable originating in the substation at a feeder breaker. Loop system feeders have numbers beginning with the prefix “L” and originate from the south structure in the substation yard. Loop feeders end at the first connected loop switch. See Loop, below. Network feeders have numbers beginning with the prefix “N” and originate from the north structure in the substation yard. Network feeders may have multiple connections to network transformer primary fault interrupter switches.
 2. LOOP CABLE – A medium voltage cable segment originating in one loop switch and extending to another loop switch.
 3. LATERAL CABLE – A medium voltage cable originating in a loop switch or primary fault interrupter switch and extending to a distribution system transformer.

B. Medium voltage cables shall be labeled with voltage, feeder or loop name, originating switch and compartment number, and terminating switch and compartment number or transformer number. Arrangement of lettering shall be as shown in the examples below.

C. Medium voltage cables in manholes, vaults and other below-grade locations shall be identified by means of 3” square 304 stainless steel valve tags, 18ga minimum thickness with rounded corners, ¼” black laser-marked lettering and top hole for attachment with cable tie.
D. Cables shall be labeled in each manhole and vault and at each below-grade termination. Install cable tags on each cable segment entering or exiting a splice (i.e. two tags for cables with straight splices, three tags for 3-way splices, etc.).

E. Medium voltage cables above grade, indoors and in pad-mounted equipment shall be identified by means of white plastic write-on tags, Electromark URD-PS or equal and handwritten labeling marked with black indelible marker. Cables shall be labeled at each above-grade termination and where exposed, but not terminated in above grade or indoor locations.

F. Secure all tags over fireproofing with UV resistant non-metallic cable ties.

G. Following are examples of typical cable tags:

\[\text{1.02 PHASE IDENTIFICATION} \]

A. Cable phasing shall be identified by colored tape bands at each termination and splice. Maintain uniform markings throughout the project. Apply phase markings such that they are not obscured by arc-proofing or binder tapes. Standard GT 19.8kV phase markings are Brown, Orange, and Yellow. Standard rotation is CCW.
1.03 CAMPUS ELECTRICAL DISTRIBUTION SYSTEM MANHOLE IDENTIFICATION

A. Stencil manhole interior wall identification markings approximately 1’ below the manhole ceiling except where ductbanks occupy that location. In those cases, stencil the manhole wall identification markings approximately 6" below the lowest installed conduits on affected manhole walls. Arrange lettering in the following format:

1. MMM
2. DD

a. Where “MMM” is replaced with the actual manhole number and “DD” is replaced with the abbreviated direction (i.e. “N” for north, “NE” for northeast, etc.)

B. Label each duct entrance face including ductbank entrance faces in which no ductbank is installed under the project.

C. Contact Georgia Tech Facilities Design and Construction for manhole numbers to be used for new manholes installed under the project.

D. Stencil lettering using red industrial enamel paint and stencils for block lettering nominally 4” in height. Remove mud and other surface contamination from affected areas of walls prior to stenciling.

1.04 TRANSFORMER IDENTIFICATION

A. Campus electrical distribution system transformers shall be identified by reflective self-adhesive backed reflective labels.

B. Self-adhesive labels shall be sunlight resistant mylar with 2 1/2" reflective lettering, Electromark REFL-YK-2.5 or equal. Colors shall be yellow lettering on a black background.

C. Lettering shall be applied along a level horizontal line with no gaps between adjacent letters.

D. Numbering format shall be BBBVN where BBB is the campus building number, V=H for 480V systems or L for 208V systems, and N is a sequence number. For example, the transformer numbers in a 480V spot network at building #103 are: 103H1 and 103H2. Associated transformer numbers shall be indicated on the engraved plastic laminate nameplate at each main breaker in the switchgear in addition to other device labeling. Contact Facilities Design and Construction for numbers to be used.

E. Do not add dashes, spaces or other characters to the number format.

F. Place numbers on transformers as shown in the following examples.
1. Example – Network Transformer:

![Network Transformer Diagram]

2. Example – Pad-Mounted Transformer

![Pad-Mounted Transformer Diagram]

1.05 SWITCH IDENTIFICATION

A. Self-adhesive labels shall be sunlight resistant mylar with 2 1/2" reflective lettering, Electromark REFL-YK-2.5 or equal. Colors shall be yellow lettering on a black background.

B. Lettering shall be applied along a level horizontal line with no gaps between adjacent letters.
C. Numbering format shall be BBB-X-Y is a standard format where BBB is the associated building number or general campus ID number, X is a sequence number for the switch assembly, and Y is the compartment number. For example, the interrupter switch associated with building 181 is 181-1 and has compartments 1 through 3 (181-1-1 through 181-1-3). Contact Facilities Design and Construction for switch numbers to be used. Show switch numbers on the plans. Include dashes as shown, but do not alter the format or add any other characters. Switch numbers will be determined by Facilities Design and Construction.

D. Switch way numbers or compartment numbers shall match the manufacturer’s numbering (manufacturer’s compartment designated 1 shall bear the Georgia Tech compartment 1 designation, and similarly for remaining switch compartments).

E. Include dashes as shown. Do not add spaces or other characters to the number format.

F. Place numbers on switches as shown in the following examples.

1. Example – subsurface switch:

![Typical Vault-Type Switch Diagram]

2. Example – pad-mounted air-insulated switch
3. Example – padmounted gas-insulated switch

G. Fault indicator windows in pad-mounted SF₆ insulated switch enclosures shall be numbered in sequence beginning with compartment 1 for the upper left window and continuing in sequence from left to right on all successive rows.
2.00 LOW-VOLTAGE AND MEDIUM-VOLTAGE IN-BUILDING ELECTRICAL SYSTEMS

A. In-building systems include mains and all components downstream of the building mains. Such equipment is not considered part of the campus electrical distribution system.

1. Electric meters:
 a. Electric meters shall be labeled with engraved plastic laminate nameplates bearing the following:
 b. “METER” or “SUBMETER” as appropriate
 c. Designation of associated service (e.g. “Main”, “Laundry”, etc.)
 d. Georgia Tech meter number, assigned by Facilities Design and Construction.

2. Main breakers and main switches:
 a. Identify with engraved plastic laminate nameplates showing equipment names to match the project riser diagram or 1-line diagram.
 b. Include the Georgia Tech transformer number of the transformer feeding the device.

3. Electrical Equipment in General:
 a. Identify with engraved plastic laminate nameplates. Identification shall match names used on plans and in riser and 1-line diagrams.

4. Phase marking:
 a. Mark phasing using Black/Red/Blue for 208V systems, Brown/Orange/Yellow for 480V systems. Use similar but distinctive markings for systems of other voltages.

END OF SECTION
260573 Short Circuit and Coordination Study

1.01 SCOPE

A. A complete short circuit and coordination and arc-flash hazard study shall be completed by a licensed engineer as a required element of construction work. The studies shall be based on actual electrical system component characteristics and conductor lengths. Equipment ratings and settings shall be based on this study.

1.01 SHORT-CIRCUIT, COORDINATION AND ARC-FLASH HAZARD STUDIES

A. Studies shall include all low-voltage and medium-voltage equipment and work affected by the project.
B. Studies shall use computer programs that are distributed nationally and are in wide use. Manual calculations are not acceptable. Studies shall comply with IEEE 399 and IEEE 1584.
C. Analytical features of short-circuit study computer software program shall include "mandatory," "very desirable," and "desirable" features as listed in IEEE 399, Table 7-4.
D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all protective devices.
E. Provide a copy of the arc-flash hazard study and the short-circuit and coordination study with equipment ratings and settings for review by the office of Facilities Design and Construction.
F. System information at the point of connection for the project will be furnished by Facilities Design and Construction upon request. The campus 19.8kV switching station includes a high speed current limiter that will act to limit 19.8kV fault currents. That limiter is not sensitive to secondary faults. This condition shall be taken into consideration in the preparation of short circuit, coordination and arc-flash hazard studies.

1.02 ARC-FLASH HAZARD WARNING LABELS

A. Provide arc-flash hazard warning labels on equipment. Install labels as required by the NEC. Labels should indicate the available energy, PPE requirements and approach distances. Provide a report listing the available energy, PPE requirements and approach distances for all equipment.
B. Do not install labels on outside face of equipment which is exposed in finished areas of buildings unless required by applicable codes or standards.

END OF SECTION
260923 Lighting Control Devices

1.01 SCOPE

A. This section includes automatic lighting controls, occupancy sensors, timer switches, and daylighting controls.

2.01 AUTOMATIC LIGHTING CONTROLS

A. Automatic lighting controls shall be installed in all spaces except where prohibited by code or where application of automatic control would create a safety hazard. Select automatic control methods as appropriate for each space and the intended use. Program and calibrate lighting controls as a part of the construction contract.

B. Individual automatic lighting control devices for control of a single room or area shall be specified for all lighting controls, in lieu of a whole building lighting control system, wherever practicable.

C. Where automatic time-clock based interior lighting control schemes are used, they shall be integrated with the building control system and shall include means for local override for after-hours use by the occupants.

D. Where lighting control panels are used, lighting control systems shall be integrated with the BAS to display status on BAS workstations and to permit alterations of settings and schedules via from BAS workstations.

E. Where means for programming is not integral to the installed equipment, furnish one set of all cables, equipment and software required for programming to the Owner.

3.01 OCCUPANCY SENSORS

A. Occupancy sensors shall be used wherever possible.

B. Spaces in which occupancy sensors are required typically include restrooms, copy rooms, file rooms, mail rooms, break rooms, conference rooms, individual offices, open office areas, laboratories, classrooms and other similar spaces.

C. Select occupancy sensor types (PIR, ultrasonic, or combination), sensor locations and aiming in consideration of the physical characteristics of each space, furniture arrangement and expected occupant activity. Occupancy sensors shall be ultrasonic except in locations where the physical configuration of the affected space specifically requires other types in order to function properly.

D. Occupancy sensors located less than 8'-6" AFF in public spaces and in other areas used by students shall be tamper-proof and vandal-resistant.

E. In addition to occupancy sensors in offices, conference rooms, labs, and classrooms, provide manual controls accessible to the occupants.

F. Manual control activation shall revert to automatic mode after suitable time delays or after a sufficient period of no occupant activity.

G. Ultrasonic occupancy sensors shall operate at 32kHz.

H. Occupancy sensors shall have BAS outputs.
4.01 TIMER SWITCHES
 A. Automatic time-out switches may be used in custodial closets, storage closets and other similar spaces where permitted by applicable codes.
 B. Automatic time-out switches shall be tamper-proof, electronic types.
 C. Mechanical timers are not acceptable.

5.01 DAYLIGHTING
 A. Daylighting and multiple level or dimming systems with light level sensors shall be installed in spaces in which daylight can be used to offset artificial lighting needs.
 B. Do not use 2-wire fluorescent dimming systems in new construction.

END OF SECTION
261200 Network Transformers

1.01 SCOPE

A. Campus electrical distribution transformers for spot network applications.

B. Network protectors are addressed in Section 262316.

2.01 NETWORK TRANSFORMER VAULTS

A. Vaults or other transformer areas shall be designed to allow NEC and NESC working space as well as to facilitate the operation, removal and installation of transformers, network protectors, and primary switches.

B. All network transformers must be installed in an area secured against access by unqualified persons.

C. See Section 260543 for additional requirements for network transformer vaults.

3.01 PRIMARY OVERCURRENT PROTECTION

A. Network transformers shall be protected on the primary side by primary fault interrupter switches.

B. Primary fault interrupter switches shall be in accordance with Section 261310 and may be located in the transformer vault or in a separate location adjacent to the network transformer vault.

4.01 NETWORK TRANSFORMERS

A. Provide IEEE C57.12.40 liquid-filled, 2-winding transformers, subway network type, suitable for frequent or continuous submersion.

B. Network transformers shall be rated 2500kVA OA 55 or less.

C. Insulating Liquid: High fire point, natural ester dielectric coolant UL listed for use in transformers and complying with NFPA 70 requirements. Fire point of not less than 300° C when tested according to ASTM D 92. Insulating liquid shall be made from edible vegetable oils and shall have low toxicity, shall be biodegradable and shall be nonhazardous. Insulating liquid shall be equal to Cooper Power Systems Envirotemp FR3.

D. Transformers shall be of sealed-tank construction of sufficient strength to withstand an internal pressure of 7 psi without permanent distortion. The cover shall be welded. The transformer shall remain effectively sealed for top oil temperatures from -5°C to 105°C.

E. Main tank shall be provided with a filling plug and a drain and sampling valve.

F. Each transformer shall be equipped with an automatic pressure-relief valve with automatic re-sealing.

G. One or more handholes shall be provided in the tank cover for access to bushing connections and current transformers. Where current transformers are required, handholes shall be sufficiently sized to allow removal of any current transformer.

H. A primary terminating chamber, primary switch and secondary network-protector throat shall be provided and shall be welded to the tank. Finish of these components shall be as specified for the main tank. Terminating chamber and primary switch compartment covers shall be bolted and gasketed. Phasing tubes, where provided, shall be welded to the primary switch cover. Fill plugs and drain valves shall be provided for primary switch and terminating...
chamber.

I. Radiators shall be flat-panel type suitable for submerged operation as well as for dry operation and shall be rigidly supported on tank walls.

J. The exterior finish shall be a paint system of corrosion resistant primer and an outer finish coat. Transformer exterior shall be thoroughly cleaned and phosphatized prior to application of paint system. Paint shall be black and shall comply with ANSI C57.12.32.

K. Neutral terminal shall be located on the tank wall.

L. Winding connections shall be delta-wye.

M. A minimum of four full-capacity 2 ½ % taps, 2AN and 2BN shall be provided in the primary windings.

N. A manually operated tap changed for de-energized operation shall be provided. The tap changer shall be operated from a single point and shall have a position indicator.

O. Bushings between main tank and primary switch as well as bushings between primary switch and terminating chamber shall be sealed to prevent the interchange of fluids between these compartments and the main tank.

P. Primary cable entrance shall be IEEE 386 compliant 600A bushings for use with 600A dead-break connectors and shall be bolted to the top of the primary terminating chamber.

Q. Secondary connections shall be by means of a standard network-protector throat. Secondary bushings shall be located inside the throat and shall be brazed or welded to the tank. Secondary bushings shall be externally replaceable.

R. A liquid-immersed three-position open-closed-ground primary switch shall be provided. The switch shall be electrically interlocked to prevent operation while the transformer is energized.

S. Primary switch shall be rated 200A min., continuously.

T. In the ground position, the switch shall be capable of withstanding a short-circuit current of 15kA for 5 sec. Without damage. In the closed position, the switch shall be capable of carrying the full short-circuit current duty of the transformer.

U. Primary switch shall be sequential grounding type or shall be equipped with phasing tubes.

V. The following accessories shall be provided:
 1. 1" upper filling plug and filter-press connection
 2. Drain and sampling valve
 3. Dial-type thermometer with manually resettable drag-hand
 4. Pressure / vacuum gauge
 5. Magnetic liquid-level gauge
 6. Phasing tubes or sequential grounding primary switch
 7. Transformer tank air-test fitting
W. Impedance:
 1. Network transformers shall have standard impedance.
 2. 7% Z for transformers rated over 1000kVA
 3. 5% Z for transformers rated 1000kVA or less.

X. Leave tanks under slight positive pressure. Use only dry nitrogen if needed to increase tank pressure.

Y. Test voltage after energizing. Adjust taps so that the secondary voltage is within 2.5% above rated secondary voltage.

END OF SECTION
261210 Pad-Mounted Transformers

1.01 SCOPE
 A. This Section includes pad-mounted distribution transformers.

2.01 GENERAL
 A. Select transformer locations such that access to transformers will not be compromised by
 security fencing, other enclosures, vehicular traffic or parked vehicles. Avoid placement of
 transformers in high pedestrian traffic areas. Transformer locations shall not be in low areas
 likely to accumulate standing water, nor shall transformers be located where they may be
 damaged by vehicles or where they would be inaccessible to equipment large enough to lift
 and transport the transformer. Bollards may be used to protect equipment provided that the
 bollards do not interfere with working space or access.
 B. Choose transformer locations to provide adequate fire separations.
 C. A minimum working space of 10’ is required in front of cable termination compartment doors
 while a minimum of 3’ is required on all other sides. Space must allow for full opening of
 compartment doors including engagement of door checks.
 D. Workspace shall be accessible. Workspace shall not fall within traffic lanes, parking spaces or
 loading zones.
 E. Transformer pads shall project at least 4" but not more than 8" above grade. Grade shall not
 exceed 1:12 slope within the workspace.
 F. Transformer pads shall be flat, cast-in-place reinforced concrete. Pads shall have a slight
 crown to shed water.
 G. Pads shall have a blockout window sized to match the inside opening at the bottom of the front
 compartment. Pad windows shall be filled with #57 stone.
 H. Anchor transformer tanks and front compartments to pads. Provide one anchor bolt for each
 anchoring hole provided on the transformer assembly. Where tank flanges are supplied
 without anchoring holes, provide a minimum of two anchor bolts with hold-down clamps at
 the back corners of the tank.
 I. Medium-voltage conduits shall be stubbed up vertically 2” above the top surface of the pad
 and shall be terminated with end bells. Primary stub-up location shall be at the center phase
 cable centerline projection based on the manufacturer’s recommendations. Spare conduits
 shall be located immediately adjacent to the primary conduits.
 J. Secondary conduits shall be stubbed up 2” above the top surface of the pad.
 K. Medium voltage conduits and cables shall not enter secondary compartment. Secondary
 conduits and cables shall not enter primary compartments. The factory installed divider
 between primary and secondary compartments shall not be altered.

3.01 PAD-MOUNTED TRANSFORMERS
 A. Pad-mounted transformers shall be 3-phase delta-wye, dead-front, liquid filled, with
 tamperproof, compartmental enclosures. Clamshell types are not acceptable.
B. Transformers shall have externally clamped 600A dead-break bushings and parking stands.

C. Transformers shall have the following options:
 1. Drain and sampling valve
 2. Fill plug
 3. Liquid level gage
 4. Vacuum-pressure gage
 5. Top-oil temperature gage with drag hand and magnetic reset device
 6. ANSI tank ground pads
 7. Self-actuating pressure relief device and means to vent pressure manually

D. Pad-mounted transformers shall be tamperproof and shall be suitable for use in areas accessible to the general public.

E. Dielectric fluid shall be equal to Cooper Envirotemp FR3 fluid.

F. Transformers shall have (3) bayonet fuses in series with internal partial range current limiting fuses under oil except that larger sizes will be permitted to use drywell current-limiting fuses where bayonet fusing is not offered by the manufacturer for the specified transformer size at 19.8kV.

G. Furnish three spare bayonet fuses for each transformer except that where drywell fuses are used; furnish one set of spare drywell fuses.

H. Transformers shall be rated 2500kVA OA55 or less. Furnish multiple transformers where additional capacity is required.

I. Where multiple transformers of the same secondary voltage are provided, the main distribution equipment shall be separate switchboards or a double-ended switchboard or switchgear with multiple mains and tie breakers(s) key-interlocked to prevent interconnection of the transformer secondaries.

END OF SECTION
261300 Medium-Voltage Switches

1.01 SCOPE
A. This section includes subsurface and pad-mounted medium voltage switches for loop switching applications.
B. Medium voltage switches shall be installed to provide load-break loop switching functions and may also provide cable grounding.

2.01 GENERAL
A. Medium voltage switches may be SF₆ insulated or air insulated. Air insulated switches shall be pad-mounted. SF₆ insulated switches may be pad-mounted or subsurface.
B. Select switch types to suit the needs of the project and in consideration of distribution system growth and expansion.
C. Select switch locations such that access to switches will not be compromised by security fencing, other enclosures, vehicular traffic or parked vehicles. Avoid placement of switches in high pedestrian traffic areas. Switch locations shall not be in low areas likely to accumulate standing water, nor shall switches be located where they may be damaged by vehicles or where they would be inaccessible to equipment large enough to lift and transport the switch. Bollards may be used to protect equipment provided that the bollards do not interfere with working space or access.
D. A minimum working space of 10’ is required in front of all cable termination compartment doors while a minimum of 3’ is required in front of all switch operator areas of switches. Space must allow for full opening of compartment doors including engagement of door checks. Switch pads shall project at least 4” but not more than 8” above grade. Grade shall not exceed 1:12 slope within the workspace. Workspace shall be accessible. Workspace shall not fall within traffic lanes, parking spaces or loading zones.
E. Select switch types, models and configurations as appropriate for the space in which they will be installed. Locations and orientation shall ensure adequate work space and accessibility for switching by an operator on grade. For installations in existing vaults, modify or replace portions of vault tops or grates as needed to accomplish this requirement. Switches shall be located near the transformers that they supply. Where located above grade, lateral switch operating handles shall be located at a safe distance from the associated transformers.
F. Above-grade switches shall be pad-mounted. Switch housings and internal structures such as switch tanks that are not supported by the switch housing shall be anchored to the pad. Provide a minimum of four anchor bolts per component unless the manufacturer’s instructions recommend otherwise.
G. Pad-mounted switches shall be tamperproof and shall be suitable for use in areas accessible to the general public.
H. Switch pads shall be flat, cast-in-place reinforced concrete. Pads shall have a slight crown to shed water. Do not place switches on below-grade cable chambers.
I. Subsurface switches shall be installed in vaults. See Section 260543.
J. Conduits entering pad-mounted switches shall be sealed to prevent circulation of humid air and resulting condensation inside the pad-mounted switch enclosure. Use an appropriate compound to seal around cables. Use manufactured compression duct plugs to seal spare conduits.

K. Switch pads shall be poured around the associated conduits. Do not leave windows within switch pads.

L. Provide spare conduits at switches as listed below.
 1. Pad-mounted air-insulated switches: One spare conduit per compartment (two spares in unused compartments)
 2. Pad-mounted SF₆-insulated switches: Provide one spare for each switched way except that where conduits from adjacent switched ways terminate at the same manhole or transformer vault, the number of spares for those switched ways may be reduced to one spare for each such pair of adjacent switched ways. In those cases, the spare shall be located halfway between the primary conduits for the adjacent switched ways.
 3. Subsurface switches: Provide no less than one spare conduit from the switch vault to each associated manhole, transformer and transformer vault.

M. Run all conduits (including spares) to associated transformers or back to associated manholes. Both conduits in each unused lateral or feeder compartment shall be run back to the manhole.

N. Conduit and cable arrangements shall be such that cables can be moved freely from bushings to parking stands.

O. Conduits shall be stubbed up vertically through the switch pad and shall be terminated with end bells. Stub-up locations shall be at the center phase cable centerline projection based on the manufacturer’s recommendations. Spare conduits shall be located immediately adjacent to the primary conduits.

P. All switches shall be equipped with 600A dead-break bushings.

Q. Switch compartments numbered 1 and 2 shall always be used for loop cable terminations. Compartments 3 through 6 as applicable shall be available for use as laterals to supply transformers.

3.01 SF₆ INSULATED SWITCHES

A. SF₆ insulated switches shall be close-open-ground loadbreak disconnect and grounding switch. Switches shall be equal to S&C Vista 330, 440, 550 or 660.

B. Switch ratings shall be:
 1. 25kV min Design voltage
 2. 125kV BIL
 3. 60kV AC withstand, 1 minute
 4. 78kV DC withstand, 15 minutes
 5. 600A Continuous and load break
 6. 16kA Sym Close and latch
4.01 AIR INSULATED SWITCHES

A. Air-insulated switches shall be four-compartment types with four fully enclosed two-position loadbreak air switches. Viewing windows shall be provided for direct visual observation of switch contacts.

B. Air-insulated, two-position switches shall include parking stands adjacent to each bushing.

C. Switch ratings shall be:
 1. 25kV min Design voltage
 2. 125kV BIL
 3. 60kV AC withstand, 1 minute
 4. 78kV DC withstand, 15 minutes
 5. 600A Continuous and load break
 6. 14kA Sym Close and latch

5.01 FAULT INDICATORS

A. Install fault indicators on each switched way, except that switches with only two ways require only one set of fault indicators.

B. Fault indicators shall be fault-powered, static voltage reset, with one remote 3-phase indicating head, inrush restraint and junction shields.

C. Nominal trip setting shall be 400A except that 600A trip is required on feeders L5, N7 and N8.

D. Fault indicators shall attach to deadfront connector body test points and shall automatically reset when line voltage is restored following a trip operation.

E. Fault indicators shall not require batteries or external reset tools.

F. Fault indicators shall provide simple visual indication.

G. Fault indicator remote heads shall be mounted adjacent to the associated switch operator hub on subsurface switches. Provide means to support fault indicator heads at the required locations.

H. Fault indicators shall be mounted in factory installed viewing windows in pad-mounted switches.

I. Fault indicators for use on fault interrupter switches shall be equal to SEL type 3TPR30400IRJ6. Note – omit J6 junction shields where installed on S&C PME-10 and similar air insulated switches). For feeders L5, N7 and N8, fault indicators shall be 3TPR30600IRJ6.

6.01 SECURITY OF EQUIPMENT

A. Provide campus standard locks for all switch housing doors, switch vault access doors, switch operator pocket doors, and switch operator hubs.

END OF SECTION
261310 MEDIUM-VOLTAGE FAULT INTERRUPTER SWITCHES

1.01 SCOPE

A. This section includes subsurface and pad-mounted fault interrupter switches.

B. Fault interrupter switches shall be installed to provide load-break switching functions, feeder grounding and overcurrent protection for each network transformer.

2.01 GENERAL

A. SF₆ insulated fault interrupting switches with electronically tripped vacuum interrupters, electronic trip units and integral close-open-ground disconnect and grounding switch. Switches shall be equal to S&C Vista.

B. All switches shall be equipped with 600A dead-break bushings.

C. Install fault interrupter switches in vaults or other subsurface enclosures where possible. Pad-mounted applications are acceptable where no suitable below-grade location exists. Select switch locations such that access to switches will not be compromised by security fencing, other enclosures, vehicular traffic or parked vehicles. Avoid placement of switches in high pedestrian traffic areas.

D. Select switch types, models and configurations as appropriate for the space in which they will be installed. Locations and orientation shall ensure adequate work space and accessibility for switching by an operator on grade. For installations in existing vaults, modify or replace portions of vault tops or grates as needed to accomplish this requirement. Switches shall be located near the transformers that they protect. Where located above grade, select switch locations to allow a safe distance between the switch operator and the associated transformer.

E. Select switch locations such that access to switches will not be compromised by security fencing, other enclosures, vehicular traffic or parked vehicles. Avoid placement of switches in high pedestrian traffic areas. Switch locations shall not be in low areas likely to accumulate standing water, nor shall switches be located where they may be damaged by vehicles or where they would be inaccessible to equipment large enough to lift and transport the switch. Bollards may be used to protect equipment provided that the bollards do not interfere with working space or access.

F. A minimum working space of 10’ is required in front of all cable termination compartment doors while a minimum of 3’ is required in front of all switch operator areas of switches. Space must allow for full opening of compartment doors including engagement of door checks. Switch pads shall project at least 4” but not more than 8” above grade. Grade shall not exceed 1:12 slope within the workspace. Workspace shall not fall within traffic lanes, parking spaces or loading zones.

G. Above-grade switches shall be pad-mounted. Switch housings and internal structures such as switch tanks that are not supported by the switch housing shall be anchored to the pad. Provide a minimum of four anchor bolts per component unless the manufacturer’s instructions recommend otherwise.

H. Pad-mounted switches shall be tamperproof and shall be suitable for use in areas accessible to the general public.

I. Switch pads shall be flat, cast-in-place reinforced concrete with a top surface nominally 4” above the surrounding grade. Pads shall have a slight crown to shed water. Do not place switches on below-grade cable chambers.

J. Switch pads shall be poured around the associated conduits. Do not leave windows within
K. Conduits entering pad-mounted switches shall be sealed to prevent circulation of humid air
and resulting condensation inside the pad-mounted switch enclosure. Use an appropriate
compound to seal around cables. Use manufactured compression duct plugs to seal spare
conduits.

L. Conduits shall be stubbed up vertically through the switch pad and shall be terminated with
end bells. Stub-up locations shall be at the center phase cable centerline projection based on
the manufacturer’s recommendations. Spare conduits shall be located immediately adjacent to
the primary conduits.

M. Provide a minimum of one conduit per switch way, including unused ways, plus spare
conduits as listed below.

N. Pad-mounted SF₆-insulated switches: Provide one spare for each switched way except that
where conduits from adjacent switched ways terminate at the same manhole or transformer
vault, the number of spares for those switched ways may be reduced to one spare for each such
pair of adjacent switched ways. In those cases, the spare shall be located halfway between the
primary conduits for the adjacent switched ways.

O. Subsurface switches: Provide no less than one spare conduit from the switch vault to each
associated manhole, transformer and transformer vault.

P. Run all conduits (including spares) to associated transformers or back to associated manholes.
Both conduits in each unused lateral or feeder compartment shall be run back to the manhole.

Q. Coordinate fault interrupter switch trip characteristics with the feeder overcurrent protection,
building main breakers and network protectors.

3.01 FAULT INTERRUPTER SWITCHES

A. Fault interrupter switches shall be non-reclosing, manual reset devices incorporating vacuum
bottles and shall be designed, built and tested in accordance with applicable sections of ANSI
C37.60 and ANSI C37.71.

B. Fault interrupter switch minimum ratings shall be:

1. 25kV min Design voltage
2. 125kV BIL
3. 60kV AC withstand, 1 minute
4. 78kV DC withstand, 15 minutes
5. 600A Continuous and load break
6. 16kA Sym Interrupting
7. 16kA Sym Close and latch
C. Fault interrupter switch minimum ratings shall be:
 1. 25kV min Design voltage
 2. 125kV BIL
 3. 60kV AC withstand, 1 minute
 4. 78kV DC withstand, 15 minutes
 5. 600A Continuous and load break
 6. 16kA Sym Interrupting
 7. 16kA Sym Close and latch

D. All interrupters and switches shall operate all three phases simultaneously. Contact position indicators shall be visible through viewing windows.

E. All switch tanks for subsurface use shall be stainless steel.

F. Trip units shall a library of user selectable standard fuse and IEEE relay curves and shall have inrush restraint and separate ground fault settings. Trip units shall not require external power. The trip unit control panel shall contain means for selection of trip characteristics and shall act to trip all three switch poles simultaneously. Settings shall be as determined in the short-circuit and coordination study and shall coordinate with upstream and downstream protective devices.

G. Where cables and/or software are required for programming trip unit settings, furnish one of each type of cable and one copy of each software package to the Owner.

H. Fault interrupter switch trip units shall be calibrated, tested and set by a qualified electrical equipment testing and maintenance organization. This work shall be included in the construction contract.

I. Fault interrupter switches shall be equal to S&C Vista 201, 312 or 413. Select the number of switched ways as needed for the project. For Vista 201, way 2 shall be the line side. For all others, way 1 shall be the line side.

4.01 FAULT INDICATORS

A. Install fault indicators on each switched way, except that switches with only two ways require only one set of fault indicators.

B. Fault indicators shall be fault-powered, static voltage reset, with one remote 3-phase indicating head, inrush restraint and junction shields.

C. Nominal trip setting shall be 400A except that 600A trip is required for feeders L5, N7 and N8.

D. Fault indicators shall attach to deadfront connector body test points and shall automatically reset when line voltage is restored following a trip operation.

E. Fault indicators shall not require batteries or external reset tools.

F. Fault indicators shall provide simple visual indication.

G. Fault indicator remote heads shall be mounted adjacent to the associated switch operator hub on subsurface switches. Provide means to support fault indicator heads at the required locations.
H. Fault indicators shall be mounted in factory installed viewing windows in pad-mounted switches.

I. Fault indicators for use on fault interrupter switches shall be equal to SEL type 3TPR30400IRJ6 except that fault indicators for feeder N7 and N8 shall be 3TPR30600IRJ6.

END OF SECTION
262200 Low-Voltage Transformers

1.01 SCOPE
 A. Dry type transformers for AC systems operating at less than 1000V.

2.01 DRY-TYPE TRANSFORMERS
 A. Transformers for general use shall be ventilated dry-type complying with UL 1561, delta-wye connected and with taps. Smaller transformers shall be encapsulated type.

 B. Provide means to remove heat dissipated by transformers in enclosed spaces.

 C. The engineer shall evaluate the expected loading conditions for each dry-type transformer to be installed. Where loading conditions would produce higher losses with NEMA TP-1 transformers than with low-temperature rise transformers, low-temperature rise transformers shall be selected such that efficiency is maximized. The engineer shall furnish documentation that proves that the selected transformer will perform more efficiently than a NEMA TP-1 compliant transformer. Otherwise, dry-type transformers shall be NEMA TP-1 or higher efficiency types and shall be factory labeled to indicate compliance.

 D. Evaluate the intended loading of each transformer and furnish K-factor transformers, electrostatically shielded transformers or other types as needed.

3.01 INSTALLATION
 A. Transformers shall be mounted on vibration isolator pads on 4" concrete curbs with chamfered edges except that smaller sizes may be wall mounted or trapeze mounted with suitable vibration isolation. Transformers shall be connected with flexible conduit for vibration isolation.

END OF SECTION
262300 Low-Voltage Switchgear

1.01 SCOPE
 A. This section includes all switchgear for use on systems operating at less than 1000V.

2.01 APPLICATIONS
 A. Switchgear is acceptable for use as power distribution equipment at any point of any building low-voltage electrical system.
 B. Switchgear is required to be used as the main distribution equipment in spot-network supplied buildings.

3.01 SWITCHGEAR
 A. Switchgear shall consist of metal-enclosed assemblies with draw-out mounted low-voltage power circuit breakers complying with ANSI C37.
 B. Circuit breaker compartments shall include shutters to automatically cover line-side bus connections when breakers are withdrawn.
 C. Provide at least one spare breaker and space for future additional breakers in all switchgear. Spaces shall include bussing, racking, shutters and provisions for the installation of breakers. Switchgear shall include provisions for expansion. Place equipment such that space for expansion is available and usable.
 D. Switchgear shall have copper bussing.
 E. Where used as main distribution equipment, provide switchgear with dedicated metering equipment compartments on each incoming line. Current transformers and voltage transformers or voltage sensing connections shall be factory installed. Metering equipment shall be as required by Section 262713, Electricity Metering.
 F. Provide with mimic bus.
 G. Provide breaker lifting device.
 H. Provide IR scanning windows.

4.01 SHORT-CIRCUIT RATINGS AND COORDINATION
 A. Circuit breakers shall be adequately rated for the available short circuit current. Main breakers and bus tie breakers shall not be equipped with instantaneous trip or instantaneous override functions that cause mis-coordination with downstream feeder breakers at fault current levels available at the switchgear. Main and bus tie breakers shall have short-time withstand ratings suitable for the associated source without instantaneous tripping or instantaneous override. Mains and tie shall be set to achieve selective coordination. Feeder breakers shall be equipped with LSIG trip units. Provide maintenance switches or other suitable means to reduce arc-flash hazard risk.
 B. Overcurrent protective devices and settings shall be selected to minimize arc-flash hazards.
 C. Provide coordinated ground fault protection on main breakers, bus tie breakers and feeder breakers.
5.01 INSTALLATION

A. Switchgear shall be installed in dedicated indoor space. Where possible, switchgear should be installed in spaces separated from mechanical equipment.

B. Switchgear shall be anchored to 4" concrete housekeeping curbs. Provide channel sills in curbs as recommended by the switchgear manufacturer. Curbs shall extend 4" beyond switchgear on all sides. Curbs shall not be oversized. Top edges of curbs shall be chamfered 1" at 45°.

C. Install arc-flash hazard warning labels as required by Section 260573.

END OF SECTION
262316 Network Protectors

1.01 SCOPE
 A. Automatic network protectors for use in secondary spot network applications.
 B. Each electrical distribution system network transformer shall be equipped with a network protector.

2.01 NETWORK PROTECTORS
 A. IEEE C57.12.44 automatic AC network protector, suitable for frequent or continuous submersion.
 B. Network protector assembly shall include the breaker unit, network relay, fuses, and all current transformers, voltage transformers, control power transformers, control components and wiring within a single submersible assembly.
 C. Network protectors shall equal to Cutler-Hammer type CMD, CM-52 or Richards type 147NP.
 D. Network protectors shall have a close-and-latch rating suitable for the available short-circuit current of the system in which they are installed.
 E. Network protector breakers and enclosures shall be equipped with rollers and extension rails for full withdrawal of the breaker from the enclosure.
 F. Enclosure:
 1. Submersible enclosure with hinged and bolted door suitable for continuous submersion.
 2. Viewing windows in door for viewing of contact position indicators and operations counter.
 3. External three-position open-auto-close operating handle.
 4. Top-mounted submersible fuse enclosure(s) and load terminals.
 5. Equipped with schraeder valves for purging and pressurizing network protector housings. Provide permanently installed pressure-vacuum gauges with stop valves.
 6. Direct mounting to submersible network transformer secondary throat and supported by network transformer.
 G. Network Relay
 1. Microprocessor based network relay to provide automatic tripping and closing of network protector. Relay mounted inside submersible housing with breaker unit on plug-in base or similar arrangement to facilitate relay testing and replacement.
 2. Network relays shall sense load current, voltage and voltage across open breaker contacts.
 3. Trip contact shall close if reverse positive-sequence power flow is out of the network.
 4. Trip contact shall close for reversed or rolled phase conditions on the network or on the transformer.
 5. Trip contact shall close on reverse transformer magnetizing current.
 6. Close contact shall close if the ensuing positive sequence power flow will be into the network.
7. Manual closing shall be blocked when the network relay trip contact is closed.

8. Network relay trip characteristic shall be field selectable and shall include watt and watt-var characteristics.

9. Network relay closing characteristic shall be field selectable and shall include straight master line and circular close characteristics. Closing shall be determined by master and phasing lines.

10. Reverse current de-sensitizing or time-delay functions, if provided shall be able to be defeated through field selected settings.

11. Visible indicators shall be provided to indicate trip, close and float conditions.

12. Settings shall be field selectable and shall be entered by means of a programmer or software and portable computer. Settings shall include the following parameters as a minimum:
 a) Voltage
 b) CT ratio
 c) Phase rotation
 d) Master line phasing voltage
 e) Phasing line
 f) Reverse trip current
 g) Trip characteristic
 h) Close characteristic

13. Standard settings for Georgia Tech campus network protectors are listed below:
 a) Reverse Trip: 0.1% of CT rating @ 180°
 b) Time Delay: 0
 c) Trip Characteristic: Watt
 d) Closing: Master Line @0°: 1.2V for 125/216V networks
 e) Closing: Master Line @0°: 0.6V on 125V base for 277/480V networks
 f) Phasing Line: -5°
 g) CPU Failure: Trip
 h) Settings shall be reviewed and approved by the engineer prior to setting.

H. Fuses
1. Fuses shall be current-limiting type, coordinated with the network protector and transformer damage curve.

2. Fuses shall be mounted in submersible housings on top of the network protector.

I. Terminal Insulation
1. Load terminals shall be covered with waterproof insulation after connection of load cables. Insulation shall be weatherproof, UV resistant adhesive coated heat-shrink network protector breakout boots equal to Raychem CBR-NPB. Alternatively, terminals
may be insulated with insulating putty, 3M Scotchfil or equal overwrapped with self-fusing rubber splicing tape, 3M Scotch 33 or equal and jacketed with vinyl electrical tape.

3.01 TESTING

A. Network protector relays shall be set and tested with a network protector test set, Multi-Amp NTS-300 or equal prior to being placed in service. This work shall be included in the construction contract.

END OF SECTION
262413 Switchboards

1.01 SCOPE

A. This section includes all switchboards.

2.01 APPLICATIONS

A. Switchboards are acceptable for use as main distribution equipment in primary loop-supplied buildings and as general distribution equipment in any building.

B. Switchboards shall not be used as main distribution equipment in spot-network supplied buildings.

3.01 SWITCHBOARDS

A. Switchboards shall be free-standing assemblies complying with UL 891.

B. Provide space for future breakers in all switchboards. Spaces shall include bussing and provisions for the installation of breakers. Switchboards shall include provisions for expansion. Place equipment such that space for expansion is available and usable.

C. Switchboards shall have copper bussing.

D. Where ground fault protection is provided on switchboard main breakers or on upstream feeder breakers, ground fault protection shall be provided on all branches and shall be coordinated with the upstream device.

E. Where used as main distribution equipment, provide switchboards with dedicated metering equipment compartments. Current transformers and voltage transformers or voltage sensing connections shall be factory installed. Metering equipment shall be as required by Section 262713, Electricity Metering.

F. Overcurrent protective devices and settings shall be selected to minimize arc-flash hazards. Provide maintenance switches or other means to limit arc-flash hazards to personnel.

4.01 INSTALLATION

A. Switchboards shall be installed in dedicated indoor space. Where possible, switchboards should be installed in spaces separated from mechanical equipment.

B. Provide channel sills in curbs as recommended by the switchboard manufacturer. Curbs shall extend 4” beyond switchboards on all sides. Curbs shall not be oversized. Top edges of curbs shall be chamfered 1” at 45°.

C. Installation shall comply with NECA 400.

D. Install arc-flash hazard warning labels as required by Section 260573.

END OF SECTION
262416 Panelboards

1.01 SCOPE
 A. This Section includes all panelboards.

2.01 APPLICATION
 A. Where suitable for the application, panelboards may be used at any point in any electrical system except as follows:
 B. Panelboards shall not be used as main distribution equipment in spot-network supplied buildings.

3.01 SCHEDULES
 A. Provide panelboard schedules on the drawings showing all circuits, connected and demand loads, mounting, ratings, interrupting rating, spaces and spares. Do not print schedules as a part of the specification book.

4.01 PANELBOARDS
 A. Panelboards shall have copper bussing and bolt-on breakers.
 B. Series rated devices are permitted.
 C. Provide space for future breakers in all panelboards and distribution panels. Spaces shall include bussing and provisions for the installation of breakers.

5.01 INSTALLATION
 A. Branch circuit panelboards shall be surface mounted and located in electrical closets except as permitted below. Closets shall be stacked where possible and shall have doors opening directly to public corridors. Panelboards in finished spaces shall be flush mounted and shall be limited to cases such as dedicated lab panels and similar applications. Panelboards may also be installed in finished areas in renovation projects where electrical closet space cannot be obtained. Maintain proper clearances and working spaces. Where panelboards are flush mounted, provide at least three spare 3/4" or larger conduits stubbed with junction boxes in accessible concealed or unfinished spaces for future use.
 B. Distribution panelboards shall be located only in electrical closets, electrical rooms or dedicated space in mechanical rooms.
 C. Comply with NECA 407.
 D. Install arc-flash hazard warning labels. See Section 260573.

END OF SECTION
262419 Motor-Control Centers

1.01 SCOPE
 A. This Section includes motor control centers and associated components.

2.01 MOTOR CONTROL CENTERS
 A. Modular arrangement of controllers, control devices, overcurrent protective devices,
 transformers, panelboards, instruments, indicating panels, blank panels, and other items
 mounted in compartments of motor-control center.
 B. Motor controllers shall be NEMA controllers with modular; individual doors with concealed
 hinges and quick-captive screw fasteners. Interlocks on combination controller units
 requiring disconnecting means in off position before door can be opened or closed, except
 by operating a permissive release device.
 C. Interchangeability: Compartments constructed to allow for removal of units without
 opening adjacent doors, disconnecting adjacent compartments, or disturbing operation of
 other units in motor-control center; same size compartments to permit interchangeability and
 ready rearrangement of units, such as replacing three single units with a unit requiring three
 spaces, without cutting or welding.
 D. Each individual controller shall include a "run" light and Hand/Off/Automatic control switch
 as a minimum. Other lights shall be provided where needed and as required to match
 existing starters within the building. Indicating light lens colors shall be selected to match
 existing indicating lights where present. Omit control switches or provide different control
 switch functions where the presence of an H/O/A switch could create an unsafe condition or
 result in the mis-operation of equipment.
 E. Electronic soft-start controllers shall be equipped with run contactors to bypass the soft start
 electronics when the motor is running.
 F. Variable Frequency Drives shall comply with Section 262923.
 G. The Engineer shall evaluate the voltages present on the electrical system during starting of
 each motor or group of motors which can start simultaneously. Provide reduced voltage
 starters or electronic soft-starters to limit starting voltage dip.
 H. Motor control center busses shall be copper. Provide a neutral bus where feeders or branch
 circuits will originate from feeder circuit breakers or panelboards within the motor control
 center.
 I. Provide space for future breakers in all motor control centers. Spaces shall include bussing
 and provisions for the installation of starters or other components. Where future expansion
 is anticipated, motor control centers shall include provisions for expansion. Place equipment
 such that space for expansion is available and usable.
 J. Where installed within the Holland or 10th St. plants, provide 4” 250° sweep analog amp
 meters with selector switches on magnetic controllers size 4 and larger.
3.01 INSTALLATION

A. Comply with NECA 402.

B. Motor control centers shall be anchored to 4” concrete housekeeping curbs. Provide channel sills in curbs as recommended by the motor control center manufacturer. Curbs shall extend 4” beyond the motor control center on all sides. Curbs shall not be oversized. Top edges of curbs shall be chamfered 1” at 45°.

C. Install arc-flash hazard warning labels. See Section 260573.

END OF SECTION
262500 Enclosed Bus Assemblies

1.01 SCOPE
 A. This Section includes requirements for low-voltage and medium-voltage enclosed bus assemblies (busducts).

2.01 APPLICATION
 A. Indoor feeder busduct and indoor plug-in busduct is acceptable for non-critical feeder and riser applications. Busducts are acceptable in any laboratory setting in which the program requires or makes desirable the use of plug-in busduct.
 B. Busduct shall not be used as main feeder conductors or as feeder, or riser conductors for critical applications in buildings equipped with secondary spot-network services.

3.01 ENCLOSED BUS ASSEMBLIES
 A. All conductors in busducts shall be copper.
 B. Busducts shall be totally enclosed, non-ventilated.
 C. Where installed in sprinkler protected buildings, busducts shall be of sprinkler-safe construction.
 D. Where installed outdoors or in unconditioned spaces, outdoor portions of medium-voltage busducts shall be equipped with thermostatically controlled space heaters.

4.01 INSTALLATION
 A. Comply with NECA 408
 B. The physical arrangement, location and support of busways shall be designed to minimize the damaging effects of moisture, contamination, vibration, expansion and contraction.

END OF SECTION
262713 Electricity Metering

1.01 SCOPE

A. This section includes all power and energy meters.

2.01 APPLICATION

A. All building services (utility supplied) and main feeders (campus distribution system supplied) shall be equipped with electronic power and energy meters complying with this Section.

B. All areas for which sub-metering is required for cost allocation purposes shall comply with this Section. Sub-metering is required for portions of buildings, areas, systems, or equipment for which independent campus entities are responsible. The extent of sub-metering work shall be determined in cooperation with Facilities Design and Construction representatives. Examples of instances of occupancies within or associated with a building and requiring sub-metering include but are not limited to: parking decks, laundries, dining facilities, parking area lighting, and street lighting.

3.01 POWER AND ENERGY METERS

A. Power and energy meters for cost allocation purposes include meters on services and main feeders as well as sub-meters as described above. Such meters shall be Powerlogic ION series devices and shall be interconnected with communications facilities and integrated into the existing campus Powerlogic ION Enterprise system for remote reading and data logging.

B. Building main meters: Meters associated with building mains shall be Powerlogic ION 7550 or 7330.

C. Spot-network supplied buildings: Main meters on each spot network shall be type 7550.

D. Sub-meters: Sub-meters are typically ION 6200, but 7330 or 7550 meters may be utilized where greater capabilities are desired.

E. Factory-installed meters in switchgear and switchboards shall be of the types listed below:
 1. Powerlogic ION 7550 with Ethergate.
 2. Powerlogic ION 7330 with Ethergate.

F. Meters in all other applications shall be of the types listed below:
 1. Powerlogic 9761E7550.
 2. Powerlogic 9761E7330.
 3. Powerlogic 9761E6200 or Powerlogic 9761C6200.

G. All meters shall be furnished with 5 amp nominal current inputs and password protection. Coordinate meter power supply with available control power sources or potential sources.

H. Where factory enclosed meters such as 9761E series or 9761C series are used, current transformers, potential taps, potential fuses and a shorting terminal block shall be provided and shall be installed in a pull-box or CT cabinet separate from the meter enclosure. Feeders and branch circuits shall not enter meter enclosures.

4.01 RELATED EQUIPMENT

A. Current transformers for mains in switchgear or switchboards shall be factory installed and wired.
B. Current transformers for sub-metering applications or for mains in panelboard applications shall be mounted in current transformer cabinets adjacent to the associated distribution equipment.

C. CTs secondary wiring length shall be minimized. The engineer shall calculate the additional burden of CT wiring and shall ensure that the total burden of the meter and associated wiring is within the rating of the CTs at the intended accuracy class.

D. Current transformers (CT) for metering applications shall be standard 5A secondary with ANSI metering accuracy class as required. Where installed in CT cabinets, CT’s shall be base-mounted. Where installed on terminals of pad-mounted transformers, CT’s shall be slipover type designed to be supported by the transformer terminals. CT configurations for other applications shall be as required for each application. BIL shall be as appropriate for each application. Primary current ratings shall be the lowest standard CT rating equal to or greater than the bus ampacity or breaker or switch frame rating. CT ratings may be reduced where low load currents are expected, but shall not be less than one half of the bus or breaker rating. CT accuracy class shall be sufficient for use in revenue metering with burden equal to or greater than that of the installed meter and any other connected equipment.

E. Where system voltages are within available voltage input ranges of meters, no potential transformers are required. Where potential transformers are used, they shall be protected by fuses on the primary and secondary sides. Potential transformers shall be instrument transformers of suitable accuracy for revenue metering and shall supply only meters and protective relays. Control power transformers shall not be used as a metering potential source.

F. Potential fuses shall be provided in all line potential leads. Fuses shall be current limiting, sized per the meter manufacturer’s recommendations. Fuses shall be mounted in dead-front finger-safe fuseholders equal to Allen-Bradley 1492-FB3C30 or in dead-front fusible disconnects equal to Square-D GS1EERU30. Fuses shall be class CC or as recommended by the meter manufacturer.

G. Provide phase to neutral potentials for each phase except where the associated power system is ungrounded delta. Provide current transformers for each phase.

H. Control power fuses shall be furnished and shall be rated as recommended by the meter manufacturer. Control power shall be disconnected by the potential disconnect device. Fuses shall be class CC or as recommended by the meter manufacturer.

I. Meter potentials and control power shall be derived from the feeder or branch circuit being metered. In the case of multiple meters grouped in one enclosure, or in distribution equipment such as switchboards or switchgear, meter potential and control power shall be derived from the common feeder supplying the distribution equipment. Separate branch circuits shall not be used for meter potentials or control power. Multiple meters in a single enclosure shall not be used unless the feeders or branch circuits being metered originate in the same distribution equipment.

5.01 COMMUNICATIONS WIRING

A. Install communications wiring and equipment including 10BaseT ethernet, 10BaseFL ethernet and RS-485. Install ethernet cabling, ethernet port and ethernet patch cables to connect meters to the campus network. Ethernet port shall be located adjacent to the meter location.

B. RS-485 wiring shall be equal to Belden 9841.

C. Ethernet cabling shall comply with other Sections of these design standards.

D. At least one main meter shall be connected to an ethernet port using an ethernet jumper cable.
The remaining meters shall be connected to an ethergate-equipped meter by means of an RS-485 Modbus network. The number of devices connected to a each RS-485 network shall be limited such that communications performance is not degraded.

E. Meter communications wiring shall be shown on the construction documents.

6.01 INSTALLATION

A. Install metering equipment within new and existing switchgear and/or switchboards. Meter faces shall be centered between 3'-6" and 6' above the floor. Meters installed in new switchboards or switchgear shall be installed at consistent positions and consistent mounting heights at each occurrence in any one lineup. Provide the meter manufacturer’s matching enclosure(s) for meters in other applications. Where installed in existing equipment in place of existing meters, mount in fabricated sheet steel plates punched to fit the new meter and cut to neatly cover the existing cutout. Such panels shall be rectangular or square panels with rounded corners, neatly cut from 11 gage steel and painted to match the existing switchboard or switchgear on which they will be installed. Secure panels to switchboards and switchgear with a minimum of four machine screws with hex nuts and lock washers. Mount panels and meters plumb and square. The installation of metering equipment within existing equipment shall be performed by the equipment manufacturer’s authorized service shop.

B. Coordinate work with Facilities Design and Construction for programming and setup of meters and meter communications. All wiring and physical installation work shall be performed by the contractor.

C. Meter wiring and metering equipment shall be specified in detail. Georgia Tech Facilities Design and Construction will provide meter detail templates and metering equipment specifications for use by the Engineer on request.

END OF SECTION
262726 Wiring Devices

1.01 SCOPE
 A. This Section includes requirements for wiring devices.

2.01 GROUND-FAULT CIRCUIT INTERRUPTERS
 A. GFCI requirements in addition to those of the NEC are contained in the Board of Regents laboratory design guide. Work shall comply with the Board of Regents laboratory design guide as well as the NEC.

3.01 WIRING DEVICES
 A. Wiring devices shall be specification grade.
 B. Furnish 20A devices except where higher ratings are required.

4.01 WEATHERPROOF COVERS
 A. Weatherproof receptacle covers shall provide full protection from weather while attachment plugs are connected as well as when no attachment plugs are connected.

END OF SECTION
1.01 SCOPE
 A. This Section includes safety switches.

2.01 SAFETY SWITCHES
 A. All safety switches shall be rated heavy duty. General duty safety switches shall not be used.

END OF SECTION
262913 Enclosed Controllers

1.01 SCOPE
 A. This Section includes separately enclosed magnetic and manual motor controllers.

2.01 CONTROLLERS
 A. Motor controllers shall be enclosed NEMA controllers.
 B. Magnetic and electronic soft-start motor controllers shall be combination type unless separate disconnecting means is provided.
 C. Each controller shall include a Hand/Off/Automatic control switch. Omit control switches or provide different control switch functions where the presence of an H/O/A switch could create an unsafe condition or result in the mis-operation of equipment.
 D. Each controller in the Holland and 10th St. plants shall include a "run" light as a minimum. Other lights shall be provided where needed and as required to match existing starters within the building. Indicating light lens colors shall be selected to match existing indicating lights where present.
 E. Electronic soft-start controllers shall be equipped with run contactors to bypass the soft start electronics when the motor is running.
 F. The Engineer shall evaluate the voltages present on the electrical system during starting of each motor or group of motors which can start simultaneously. Provide reduced voltage starters or electronic soft-starters to limit starting voltage dip.

3.01 MANUAL MOTOR CONTROLLERS
 A. Manual motor controllers may be used where suitable and where automatic control is not required.
 B. Manual motor controllers shall be marked as required by NEC 430.109, or separate disconnecting means shall be provided.

END OF SECTION
262923 Variable-Frequency Motor Controllers

1.01 SCOPE

A. Variable frequency AC motor controllers.

2.0 VARIABLE FREQUENCY DRIVES

A. Variable frequency drives (VFDs) shall be of the PWM type using IGBT output devices. VFDs shall be equipped with disconnecting means, short-circuit and ground-fault protection all mounted in a common NEMA 1 enclosure and UL listed as a unit. Other enclosure types may be specified where necessary due to the environment in which the VFD will be installed. Disconnecting means shall be interlocked with VFD enclosures and equipped with defeat mechanisms for use by qualified service personnel. Provide means for accessing VFD displays and basic controls with the enclosure door closed.

B. VFDs shall be listed for installation in plenum and air-handling spaces and shall be wall or floor mounted in accessible spaces providing proper working space and secured against access by unqualified personnel. VFDs shall not be mounted inside of any equipment or duct.

C. VFDs for installation in mechanical rooms or other similar spaces shall be heavy duty industrial type and shall be de-rated as applicable for the environment in which they will be operated. De-rating shall be in accordance with the manufacturer's printed data or written recommendation.

D. All VFDs installed in the Holland central plant or the 460 10th St. chiller plant shall be rated for full capacity at 50°C ambient temperature.

E. The system impedance upstream of each VFD shall be approximately 5% based on the VFD rating. The minimum acceptable impedance is 3%. Provide input line reactors to achieve the required impedance. Where present, DC link reactance may be applied to this requirement. Input surge protection is required for all VFDs.

F. VFDs shall be located as close as practical to the driven motor.

G. Motor circuit conductors shall be XHHW, RHW or other XLPE or EPR containing insulations. Type THHN shall not be used.

H. Where motor circuits are sized #1 AWG and larger, motor circuit conductors shall be continuous corrugated aluminum sheathed MC cable having three phase conductors and three grounding conductors symmetrically arranged within the sheath. MC cable shall be equal to Southwire HLX01XXH power cable.

I. Harmonic distortion resulting from VFD application shall be within the limits prescribed by IEEE 519-1992; Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems.

J. In critical applications, and where the driven system will tolerate full-speed operation, provide VFDs with 3-contactor bypasses. Bypasses shall consist of input and output contactors for the VFD as well as a full voltage starter providing overload protection for the motor in accordance with the NEC. Bypasses shall be mounted in a common enclosure with the VFD and shall be UL listed as a unit. Bypasses shall be controlled by a front panel mounted switch having "DRIVE", "OFF", "BYPASS", and "TEST" positions. The VFD shall be accessible for testing and repair in the bypass and test positions. Output contactors shall be maintained during line voltage sags by the use of DC coils, constant voltage transformers, or other means to properly
coordinate the output contactor with the VFD's voltage sag ride-through capability. Output contactors shall not drop out during VFD operation regardless of power line sags and momentary interruptions.

K. VFDs shall have selectable automatic restart functions after undervoltage trips and shall be set for automatic restart except where automatic restarts could pose a danger to personnel or driven systems.

L. VFD carrier frequencies shall be selected in consideration of motor noise and its audibility in occupiable portions of the building and exterior spaces. Provide VFDs with selectable carrier frequencies or “quiet mode” settings.

M. VFDs shall comply with IEC std. EN50081-2; Electromagnetics Compatibility Generic Emission Standard, Part 2 - Industrial Environments.

N. VFD controls shall be compatible with the building control system.

O. Insulation systems in motors used with VFDs shall comply with NEMA MG-1 part 31.

P. Start-up services shall be provided by the manufacturer's trained technician. Personnel without evidence of training by the manufacturer shall not perform start-up services.

Q. Where VFDs are not in sight from associated motors or are more than 50 feet from associated motors, provide a disconnect switch at the motor location. Such switches shall have auxiliary contacts interlocked to stop VFDs prior to opening of switch contacts except where VFD’s are designed to allow switch opening while running.

END OF SECTION
263200 Packaged Generator Assemblies

1.01 SCOPE
 A. Engine-generator sets used for emergency and standby power.

2.01 APPLICATIONS
 B. New construction projects and complete renovation projects over 50,000 GSF shall include engine-generator sets for emergency power.

3.01 ENGINE GENERATORS
 A. Engine-generator sets shall be natural gas fueled, radiator cooled and with 1800RPM alternators, isochronous governors, electronic voltage regulators, permanent magnet exciters and thermostatically controlled water jacket heaters.

 B. Engine-generator sets shall be capable of operation on either natural gas or an LP-air mixture. This is not a changeover system, but is a requirement based on the Georgia Tech gas distribution system which normally operates with natural gas, but is backed up by an LP-air mixing station. Engine-generator sets shall deliver the specified output indefinitely while running on either fuel composition in an ambient temperature of 104°F (104°F outdoor air temperature for enclosed genset applications).

 C. Exhaust silencers shall be critical grade. Choose generator locations with consideration of the noise that will be produced when the generator set is exercising or in operation. Maintain adequate separation between generator exhaust and building outside air intakes to prevent contamination of building air.

 D. Maintain separation of emergency and standby loads in accordance with NEC requirements including separate transfer equipment and selective load shedding.

 E. Engine-generator sets shall be installed indoors, except where space cannot be made available, outdoor installation may be permitted. Where engine-generator sets are installed outdoors, mount engine-generator sets on concrete bases sufficiently large as to resist movement caused by the engine-generator set and extending deep enough to prevent frost heave. Engine-generator sets installed outdoors shall be provided with tamper-resistant, weatherproof enclosures equipped with locks on all access doors and panels and must have all openings screened to prevent entrance of rodents. Rodent-resistant enclosures or special screening must be provided. Route conduits and piping to outdoor engine-generator sets from below grade through the concrete base within the generator set enclosure. Provide a dirt clean out leg in the gas supply. Gas valves must not be accessible to the public or shall be tamper resistant.

 F. Provide a GFCI convenience receptacle in all exterior engine-generator set enclosures.

 G. Initial start-up of engine-generator sets shall be performed by a manufacturer's authorized service technician. On start-up, the engine-generator set shall be load tested at full load on the permanent fuel supply with an external load bank for eight hours.

 H. The automatic transfer switch must be “Make before break” in lieu of “break before make.”
4.01 EMISSIONS

A. Comply with California SCAQMD (South Coast Air Quality Management District) requirements. Provide certification.

B. Comply with 40 CFR 60 Subpart JJJJ. Provide certification.

C. Engine-generator set NOx emissions shall be less than 1.5 grams/bhp-hr. Refer to the section 238234 containing EPA Title V requirements for NOx emissions.

D. Obtain the approval of Facilities Utilities & Energy Department for all fuel-burning equipment prior to installation. Do not place the engine-generator set on its pad before obtaining this approval.

END OF SECTION
265100 Interior Lighting

1.01 SCOPE
 A. This section includes interior lighting fixtures

2.01 INTERIOR LIGHTING
 A. Indoor fluorescent fixtures shall utilize T5 fluorescent lamps or LED sources wherever possible.
 B. T-8 lamps and compact fluorescent lamps are acceptable where products utilizing T5 lamps or LED sources are not commercially available for the fixture types required
 C. Coordinate lamp type with area lighting controls to verify ballast or driver compatibility with lighting control technologies
 D. Self-ballasted compact fluorescent lamps are not acceptable
 E. Lamp or LED source color temperature shall be 3500°K with a minimum CRI of 80.
 F. All fixtures shall be specification grade
 G. Fluorescent fixtures shall be equipped with high frequency electronic ballasts
 H. The use of LED lighting fixtures is highly desirable where suitable products are available.
 I. LED fixtures are specifically preferred where dimming is required and/or where access for maintenance is difficult (i.e. more than 10' AFF)
 J. LED fixtures shall utilize manufacturer installed integrally mounted LED sources. LED T8 replacement lamps are NOT acceptable.
 K. LED fixtures must have been tested in accordance with IES LM79 by at least one of the following: DOE, NVLAP approved lab, or Caliper recognized lab
 L. LED fixture manufacturers shall provide IES LM80 information showing L70 life of at least 50,000 hours
 M. Indoor lighting levels shall be as recommended by the Illuminating Engineering Society of North America, IESNA
 N. For all non-emergency interior lighting with direct line of sight to any openings in the building envelope1 (translucent or transparent … i.e. windows), reduce the input power by at least 50% between 11pm and 5am. After hours override may be provided by a manual or occupant sensing device provided the override lasts no more than 30 minutes. If a building or room has twenty four hour operation, and any non-emergency interior lighting has a direct line of sight to any openings in the building envelope1, an alternative option must be followed: All openings in the building envelope (translucent or transparent … i.e. windows) with a direct line of sight to any non-emergency luminaires1 must have shielding either permanently in place, or controlled/closed by an automatic device for a resultant transmittance of less than 10% between 11pm and 5am. (i.e. automatic blinds) 1Any non-emergency luminaire with a fixture photometric profile which pierces an opening in the building envelope is considered to have a direct line of sight to that opening.
 O. Fixtures shall be supported independently of ceiling grids. Provide at least two supports at diagonally opposite corners of each fixture. Supports shall be attached directly to the structure above.
3.01 EGRESS LIGHTING
 A. Local standby generators are the preferred method for powering emergency egress lighting
 B. Provide battery backup ballasts and/or battery powered emergency lighting fixtures where an engine-generator set is not included in the project
 C. Where one or more engine-generator sets are included in the project, emergency egress lighting shall be powered by the emergency power system

4.01 EXIT SIGNS
 A. Exit signage shall be illuminated by diffuse LEDs.
 B. Provide green LED signs for all new work and complete renovations.
 C. Provide red LED signs only where existing signage is to remain and is red.

END OF SECTION
265600 Exterior Lighting

1.01 SCOPE

A. Included in this section:
 1. Led lighting fixtures for streets, including service drives and similar applications
 2. Surface parking lots
 3. Pedestrian walkways and bikeways
 4. Parking garage interior and top level parking areas

B. Not included in this section:
 1. Building-mounted exterior fixtures except where used for applications noted above.
 2. Interior fixtures except as noted above.
 3. Accent, landscape and other exterior fixtures used for purposes other than those listed above.

2.01 CAMPUS STANDARD FIXTURES

A. Campus standard street, walkway, parking lot and parking garage fixtures shall be LED.

B. General requirements for LED fixtures:
 1. Cast aluminum housings with integral thermal management system and corrosion resistant powder coat finish.
 2. UL listed and labeled for wet locations.
 3. Ingress protection rating of ip65 or higher.
 4. ROHS compliant.
 5. 4000ºK color temperature.
 6. CRI 70, minimum.
 7. Comply With ANSI C78.377A
 8. Test report and .ies photometric file available for each fixture configuration to be used. Testing in accordance with IESNA LM-79 BY a nationally recognized testing laboratory.
 10. Fixtures shall appear in the design lights consortium qualified products list.
 11. Electronic Drivers with Thermal Protection, Short Circuit Protection And Overload Protection.
 12. Surge Protection meeting Category C per ANSI C62.41.2.
 13. Power Factor: 0.9 or higher. THD: less than 20%.
 14. Fixture manufacturer shall have been in the business of manufacturing led fixtures for at least 5 years.
 15. Fixture Warranty Shall Be 5 Years, Minimum.
 16. Furnish fixtures using LED chips by a Manufacturer which has been in the business of producing LED chips for lighting applications for at least 3 years.
C. Streets, Surface Parking Areas
 1. Full cutoff
 2. Traditional shoebox form, arm-mounted on square steel poles. Fixture size and appearance shall be similar to traditional hid shoebox fixtures.
 3. Dark bronze finish.
 4. Minimum Lumen Maintenance: 0.9 at 50,000 hours at 25ºC.
 5. Expected fixture life: 100,000 hours, minimum
 6. Nominal 30’ mounting height above grade.
 7. Street Lighting Fixtures: LITHONIA CSX1 LED 60C 700 40K SPA DDBXD or equal. Light distribution type shall be selected by the engineer as needed for each application.
 8. Parking Lot Lighting Fixtures: LITHONIA CSX1 LED 60C 700 40K SPA DMG DDBXD or equal. Light distribution type shall be selected by the engineer as needed for each application.
 9. Any proposed equivalent fixtures shall be submitted to the owner for approval prior to bid. Equivalency will be judged on appearance and on compliance with this section.
 10. Poles: 5” square steel, non-tapered, 30’ height with anchor base, hand-hole, base cover and dark bronze powder-coat finish. Equal To LITHONIA SSS 30 DDB.

D. Pedestrian walkways:
 1. The campus pedestrian-scale fixture is HOLOPHANE utility-series Arlington full cutoff, 70W, dark bronze: HOLOPHANE AUL 070 4K AS Z L3 S. TYPE L3 or L5 distribution shall be selected by the engineer as needed for each application.
 2. The campus pedestrian-scale fixture pole is HOLOPHANE WADSWORTH SERIES with 19” base, 5” straight fluted shaft, 10’ height: HOLOPHANE WD A 10 F5J 19 P07 ABG BZ.
 3. Substitution of fixtures and/or poles is not permitted.

E. Parking Garage:
 1. Minimum Lumen Maintenance: 0.95 AT 50,000 HOURS AT 25ºC.
 2. Expected Fixture Life: 100,000 hours, minimum
 3. 0-10V dimming, capable of dimming to 10% power or lower.

3.01 LIGHTING DESIGN CRITERIA
 A. All projects shall minimize light trespass from the building and along GT campus boundary or site not on GT main campus, reduce sky-glow to increase night sky access, improve nighttime visibility through glare reduction and reduce development impact from lighting on nocturnal environments caused by light pollution. GT campus is classified as an LZ3 as defined in IESNA RP-33. All projects with exterior lighting shall meet the following:
 1. Exterior Site Lighting
a. Site and building-mounted luminaires produce a maximum initial illuminance value no greater than 0.20 horizontal and vertical footcandles (2.0 horizontal and vertical lux) at the campus property boundary or site boundary that is not on GT main campus and no greater than 0.01 horizontal footcandles (0.1 horizontal lux) 15 feet (4.5 meters) beyond the campus or site. Document that no more than 5% of the total initial designed fixture lumens (sum total of all fixtures on site) are emitted at an angle of 90 degrees or higher from nadir (straight down). Light areas only as required for safety and comfort. Exterior lighting power densities shall not exceed those specified in ANSI/ASHRAE/IESNA Standard 90.1-2007 with Addenda 1 for the documented lighting zone. Justification shall be provided for the selected lighting zone. Lighting controls for all exterior lighting shall comply with section 9.4.1.3 of ANSI/ASHRAE/IESNA Standard 90.1-2007, without amendments.

b. Streets, walkways and surface parking areas:
 1. Illuminance Levels: Comply with IESNA G-1-03 and not less than 2FC horizontal average, maintained. Provide an average minimum uniformity ratios for pedestrian walkways shall not exceed 4:1 horizontal. The area within 10’ (min.) on each side of pedestrian walkways shall be illuminated at one third of the pedestrian walkway illuminance or greater.

c. Parking garage lighting:
 1. Illuminance Levels: Comply with IESNA G-1-03, but not less than 6FC average horizontal, maintained and no greater than 4:1 average to minimum uniformity. After approval of fixture submittals, the engineer shall calculate a high-level dimming set point such that the system can be tuned to the required average light level. Calculation shall include appropriate light-loss factors. The intent is reduce energy usage by operating the system at less than 100% power while maintaining the target illuminance criteria.

2. Interior Lighting
 1. Project teams must comply with 1 of the 2 options for interior lighting below:
 i. Reduce the input power (by automatic device) of all nonemergency interior luminaires with a direct line of sight to any openings in the envelope (translucent or transparent) by at least 50% between 11 p.m. and 5 a.m. After-hours override may be provided by a manual or occupant-sensing device provided the override lasts no more than 30 minutes.
 ii. All openings in the envelope (translucent or transparent) with a direct line of sight to any nonemergency luminaires must have shielding (controlled/closed by automatic device for a resultant transmittance of less than 10% between 11 p.m. and 5 a.m.).
4.01 CONTROLS

A. Street and walkways lighting control:
 1. Photocell controlled as a group. Individual photocell control should be avoided.

B. Parking garage and surface parking lot lighting control:
 1. Control system shall include multiple dimming zones with occupancy sensors. In addition to occupancy-based dimming control, perimeter zones shall include daylighting control. In addition to occupancy-based dimming control, top-level and surface parking area fixtures shall also include dusk to dawn control.
 2. The system shall include ethernet gateways, wireless fixture control modules, repeaters as needed, pir motion sensors, daylight sensors and photocells.
 3. Remotely accessible management software with multi-level password secured access shall permit remote commissioning of devices, creating and editing control groups and schedules, setting and changing dimming level for high and low level setpoints, setting and changing motion sensor time delay parameters, temporary override capability, historical energy logging and data logging, and data export to excel or .csv. Software shall be locally installed, windows 7 64-bit compatible, and shall not require a subscription fee.
 4. Dimming shall be 0-10V, adjustable in 0.1V increments.
 5. System hardware and components shall be suitable for outdoor installation and use and shall be UL listed. Wireless components shall comply with FCC regulations.
 6. Where fixture controllers and/or motion sensors are installed inside fixtures, such components shall be factory-installed and shall not compromise the fixture warranty.
 7. Controls shall be compatible with the owner’s existing control system. Contact the owner for additional details regarding parking garage lighting controls.
 8. Full commissioning of the controls system shall be included as part of the construction contract. The commissioning agent shall be a qualified, authorized representative of the controls manufacturer. Commissioning shall be performed in consultation with the owner.

5.01 FOUNDATIONS

A. All pole foundations shall be 24” diameter round precast concrete with 1” chamber at the top. Foundations shall be designed by a licensed engineer. Pole foundations shall be fabricated by a precast concrete manufacturer whose regular business includes manufacturing of precast pole foundations.

B. Anchor bolt pattern shall be centered in the foundation such that when installed, the pole is centered on the foundation.

C. All conduits and wiring shall be concealed inside the foundation and within the pole.

D. Street light and parking lot pole foundations shall be oriented such that the flat sides of the pole are parallel and perpendicular to the adjacent curb.

E. Use double nuts for street light poles and adjust such that poles are plumb. Install the pole manufacturer’s matching anchor base cover to conceal anchor bolts and nuts.

F. Set pedestrian-scale poles tight to foundations. Do not use double nuts. Shim pedestrian-scale poles plumb and grout any remaining void with non-shrink grout.
G. Pole foundation projections above grade shall be the minimum necessary to prevent water, silt and debris from entering or accumulating against pole bases and shall be coordinated with the elevation of any adjacent sidewalks or similar surfaces. Foundations within sidewalks and similar hard-surfaced areas shall be set such that the bottom of the chamfer meets the sidewalk. In sloped areas, this applies to the uphill side.

H. Street and parking lot light pole foundations in vehicular traffic areas shall extend 30” above grade to prevent vehicles from contacting poles. Pedestrian poles shall not be placed in vehicular traffic areas.
Set pole base tight to foundation. Shim to plumb and grout any resulting voids with non-shrink grout. Do not use double nuts.

Install double nuts with washers and lockwashers. Adjust to set pole plumb. Install pole manufacturer's matching anchor base cover.

Precast concrete foundation

Pedestrian-scale pole installation

Street and parking lot pole installation
265600 – Exterior Lighting

Revised: December 10, 2015
6.01 Design

A. Spacing between street and walkway fixtures shall be determined by the engineer except as required by the landscape design criteria. Lighting shall meet the specified lighting design criteria.

B. For all large areas and whenever possible, use staggered circuits in order to minimize the loss of light in the event of failure of one circuit.

C. For pole-mounted fixtures, install fuses in pole base.

7.01 Legacy Fixtures

A. The following fixtures are retired standards. They shall not be specified or installed except where specifically directed by the Georgia Tech Project Manager.

1. Street and Parking Area Fixture: Full cutoff shoebox style equal to General Electric Decashield 400, dark bronze finish, 250W or 400W HPS lamp, 30’ mounting height. IES type III or other optic as selected by the engineer for each application. Install on 5” square steel pole, 30’ height, with dark bronze finish equal to LITHONIA SSS 30 DDB.

2. Pedestrian-Scale fixture, Traditional: HOLOPHANE UTILITY-SERIES ARLINGTON full cutoff with medium-base 100W HPS lamp and dark bronze finish: HOLOPHANE ARU 10DHP MT Z C3 S. Engineer shall select C3 or C5 OPTIC as needed for each application. Install with HOLOPHANE WADSWORTH POLE, 19” base, 5” straight fluted shaft, 10’ height: HOLOPHANE WD A 10 F5J 19 P07 ABG BZ.

3. Pedestrian-Scale fixture, Contemporary: Intrigue large Eurotech full cutoff with 100W HPS lamp, dome top and silver finish: INTRIGUE LET PT 100HPS D TY5 SIL. Install with intrigue pole, 4” round straight shaft and 10’ height: INTRIGUE PA1 S 10 T 4.

END OF SECTION
COMMUNICATIONS

270500 Common Work Results for Communications

1.00 GENERAL:

A. Telecommunications is to be considered as a prime utility with the same status as electrical power, water and sewer in new construction and renovation projects. The Using Agency, when developing its project program budget, is to include telecommunications infrastructure (by Architects and Engineers) and basic electronics budgets.

B. The development of design and construction documents for telecommunications infrastructure should be included in the full scope project construction documents as prepared by the design professionals for the project.

C. The following are minimum design guide lines for use in all state facilities.

1.01 PROGRAMMATIC DESIGN STAGE

A. The design professional will meet with the Using Agency along with a IT Project Manager representative from the Georgia Institute of Technology - Office of Information Technology (OIT), to determine the following site specific issues:

B. Using Agency’s preferred data and telephone topology for the wiring infrastructure and electronic methodology.

C. Develop a preliminary budget for site pathways and associated enclosures (for both Using Agency’s needs and public utilities) and Using Agency’s interbuilding cabling infrastructure as part of the project construction cost.

D. Develop a preliminary budget for intrabuilding cabling infrastructure for data, telephone and video (including backbone cables) as part of the project construction cost.

E. Develop a preliminary budget for the data network electronics (switches, routers, etc.) necessary to meet the minimum requirements. The data electronics budget shall be included as a sub line item in the loose equipment budget of the project budget.

F. Develop a preliminary budget for the wireless network electronics necessary to meet the minimum requirements. The wireless electronics budget shall be included as a sub line item in the loose equipment budget of the project budget.

G. Develop a preliminary budget for telephone sets and installation of telephone dial tone to meet the needs of the using agency and building /fire /life safety and security /alarm /control circuits. The voice equipment budget shall be included as a subline item in the loose equipment budget of the project budget.

1.02 PRELIMINARY DESIGN STAGE

A. Site specific requirements for local telephone service routes to site, service and backbone cable, raceway requirements and data service for the site.

B. Establish any Using Agency deviations from the telecommunications minimum requirements.
1.03 FUNDAMENTALS OF DESIGN

A. In all cases of new construction and renovation, projects shall include a data/telephone network connection in each classroom, office (selected offices includes video), laboratory, conference room, and dorm room. Video distribution system shall be included to service classrooms, lecture halls and auditoriums when required by the Using Agency.

B. The design for these networks should be complete enough to provide fundamental data network communications to each port.

C. All of the equipment selected and designed by the Using Agency shall meet or exceed national accepted standards of IEEE 802.3 or other national standards. The Using Agency may enhance the telecommunications requirements for their project, but may not deviate below the minimum requirements as specified by this document.

D. In the case of renovations, it is recommended the removal of existing communications cables be reviewed, if appropriate.

1.04 GENERAL SITE PATHWAYS AND INFRASTRUCTURE

A. Provide pathways for Using Agency and public utilities to building entrance room. A minimum of (2) 4" and (4) 2" concrete encased ducts shall be installed for building services. Coordinate with Using Agency for connection location to existing OSP infrastructure. Depending on function of the building, the number and size of ducts will change upward. Refer to the following list for recommended minimum entrance conduits based on building use/occupancy:

1. Small Residential or Small Admin: (2) 4" & (4) 2" concrete encased ducts
2. Large Residential ducts: (4) 4" & (4) 2" concrete encased
3. Large Admin or Small Academic: (4) 4" & (6) 2" concrete encased ducts
4. Large Academic or Small Research: (6) 4" & (6) 2" concrete encased ducts
5. Large Research: (6) 4" & (8) 2" concrete encased ducts

B. 4" duct with (4) 1" corrugated innerducts (w/ pull tape) can be substituted for 2" ducts on a (1) 4" duct with innerducts per (2) 2" ducts (round up).

C. For interbuilding fiber (data services), in a campus environment, run a minimum of 12-strand single-mode fiber optic cables from the closest interconnect location to building Entrance Facility (EF) / Equipment Room (ER). In some cases, a multi-mode fiber optic cable (62.5/125um or 50/125um OM3) might be required. Coordinate with Using Agency for location and path to closest interconnect location. Interbuilding fiber optic cables shall be of loose tube, all-dielectric construction. Refer to the following list for recommended minimum fiber counts based on building use/occupancy:
1. Small Residential or Small Admin: 12sm
2. Large Residential: 24sm
3. Large Admin or Small Academic: 24sm
4. Large Academic or Small Research: 36sm
5. Large Research: 48sm

D. 50/125um OM3 laser optimized, multi-mode fiber should be considered for new campuses, for campuses with 50/125um OM3 fiber already installed, and/or interbuilding fiber lengths less than 300 meters.

1. **Enhanced Multi-mode Fiber (50/125um OM3) - laser optimized:**

<table>
<thead>
<tr>
<th>Wavelengths</th>
<th>850nm</th>
<th>1300nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation (max)</td>
<td>3.5dB/km</td>
<td>1.5 dB/km</td>
</tr>
<tr>
<td>Bandwidth (min)</td>
<td>2000 MHZ/km</td>
<td>500 MHZ/km</td>
</tr>
</tbody>
</table>

a) Guaranteed 10 Gigabyte Ethernet distance 300m

2. **Multi-mode Fiber (62.5/125um):**

<table>
<thead>
<tr>
<th>Wavelengths</th>
<th>850nm</th>
<th>1300nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation (max)</td>
<td>3.5dB/km</td>
<td>115 dB/km</td>
</tr>
<tr>
<td>Bandwidth (min)</td>
<td>200 MHZ/km</td>
<td>500 MHZ/km</td>
</tr>
</tbody>
</table>

3. **Single-mode Fiber:**

<table>
<thead>
<tr>
<th>Wavelengths</th>
<th>1310nm</th>
<th>1500nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation (max)</td>
<td>0.45dB/km</td>
<td>0.35 dB/km</td>
</tr>
<tr>
<td>Bandwidth (min)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

E. All interbuilding fiber optic cables shall be homerun from building EF / ER to interconnect location.

F. See section 12.01 EF / ER and TR Fiber Optic Components for termination hardware for fiber cables.

G. For buildings which receive their data network services via telephone services contact Service Provider for the site specific data network to ascertain which carrier and local exchange will be involved and their preferred routing into the building project.

H. The Using Agency will provide the basic electronics specifications to connect the building to the campus network or agency network. The electronic device will, in most cases, be a router.

I. Contact Service Provider for the site specific telephone service routing and space requirements for the Entrance Facility (EF) / Equipment Room (ER) and Telecommunication Rooms (TRs) for the building.

1.05 ENTRANCE FACILITY (EF) AND EQUIPMENT ROOM (ER)
A. Create a central entrance room for all communications for a building. This space will be known as the Entrance Facility (EF) / Equipment Room (ER). Locate the telephone and data entrance ducts, cables, protectors, etc. in this location. The main building data electronic equipment will be located in this space.

B. Reference ANSI / TIA / EIA / 569B for recommended sizes. A minimum room of 150 sq.ft. size (10' x 15') with a single 3'-0" door opening outward is required. Locate EF / ER so that door opens to common area (ie: hallway). Do NOT locate EF / ER so that access must be gained through another space to get to EF / ER.

C. Provide a minimum of (9) nine 20A, 120v, isolated ground, duplex receptacles (provide receptacles every 4'-0" o.c.) on a minimum of (3) three dedicated 20A circuits and (2) dedicated 20A, 240v, grounded, locking receptacles (L6-20R) per EF / ER. If EF / ER has equipment racks, provide (2) dedicated 20A, 240v, grounded, locking receptacles (L6-20R) and (1) dedicated 20A, 120v, isolated ground, quadruplex mounted to equipment rack designated for building network equipment and building voice equipment respectively. If available, (1) L6-20R shall be on normal building power and (1) L6-20R shall be on generator back-up power and the (1) quadruplex shall be on generator back-up power. Verify / coordinate exact power requirements with Georgia Tech – OIT for exact equipment being supplied.

D. Coordinate with Service Provider for EF / ER specific telephone space, grounding, power (if applicable), requirements.

E. EF / ER shall have sleeves / conduits to first level TRs on the floor(s) above. Provide (4) 4" sleeves / conduits plus (1) 4" sleeve / conduit for every (2) two floors above EF / ER.

F. See Mechanical section for HVAC requirements for Entrance Facility / Equipment Room.

1.06 TELECOMMUNICATION ROOM (TR)

A. If the building has multiple floors, telecommunication rooms are recommended on each floor. Because the distance from the proposed telecommunication room shall not be over 250 feet to any workstation location, multiple TRs may be required (on the same floor). TRs should be located near the center of the building and vertically aligned whenever possible.

B. Reference ANSI / TIA / EIA / 569B for recommended sizes. A minimum room of 10'x11' size with a single 3'-0" door opening outward is required for each 10,000 square feet of floor area. Locate TR so that door opens to common area (ie: hallway). Do NOT locate TR so that access must be obtained, through another space to get to TR.

C. Provide a minimum of (6) six 20A, 120v, isolated ground, duplex receptacles (provide receptacles every 4'-0" o.c.) on a minimum of (2) two dedicated 20A circuits per TR. If TR has equipment racks, provide (2) dedicated 20A, 240v, grounded, locking receptacles (L6-20R) and (1) dedicated 20A, 120v, isolated ground, quadruplex mounted to equipment rack designated for network equipment and voice equipment respectively. If available, (1) L6-20R shall be on normal building power and (1) L6-20R shall be on generator back-up power and the (1) quadruplex shall be on generator back-up power. Verify / coordinate exact power requirements with Georgia Tech – OIT for exact equipment being supplied.

D. Telecommunication Rooms shall have sleeves / conduits to TR on the floor above. Provide (4) 4" sleeves / conduits plus (1) 4" sleeve / conduit for every (2) two floors above TR in question.

E. See Mechanical section for HVAC requirements for Telecommunication Rooms.

1.07 BUILDING FIBER BACKBONE
Office of Facilities Architectural and Engineering Design Standards – Georgia Tech Yellow Book

F. For intrabuilding fiber backbone (data services), run a minimum of 12-strand multi-mode (50/125um OM3 laser optimized) and 12-strand single-mode fiber optic cables from the EF/ER to each TR (62.5/125um may be used in addition to 50/125um fiber for support of legacy systems). Each fiber optic backbone cable shall be homerun from TR to EF/ER.

Intrabuilding fiber optic cables shall be of tight buffered, plenum-rated construction. Refer to the following list for recommended minimum fiber counts based on building use/occupancy:

1. Residential or Small Admin 12mm (50um)/12sm
2. Large Admin or Small Academic 24mm (50um)/24sm
3. Large Academic or Small Research 36mm (50um)/36sm
4. Large Research 48mm (50um)/48sm

5. Enhanced Multi-mode Fiber (50/125um OM3) - laser optimized:

<table>
<thead>
<tr>
<th>Wavelengths</th>
<th>850nm</th>
<th>1300nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation (max)</td>
<td>3.5dB/km</td>
<td>1.5 dB/km</td>
</tr>
<tr>
<td>Bandwidth (min)</td>
<td>2000 MHZ-km</td>
<td>500 MHZ-km</td>
</tr>
</tbody>
</table>

a) Guaranteed 10Gigabit Ethernet distance 300m
b) 50um multi-mode fiber optic cables shall have an AQUA outer jacket color.

6. Multi-mode Fiber (62.5/125um) - if required:

<table>
<thead>
<tr>
<th>Wavelengths</th>
<th>850nm</th>
<th>1300nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation (max)</td>
<td>3.5dB/km</td>
<td>1.1 dB/km</td>
</tr>
<tr>
<td>Bandwidth (min)</td>
<td>200 MHZ-km</td>
<td>500 MHZ-km</td>
</tr>
</tbody>
</table>

a) 62.5um multi-mode fiber optic cables shall have an ORANGE outer jacket color.

7. Single-mode Fiber:

<table>
<thead>
<tr>
<th>Wavelengths</th>
<th>1310nm</th>
<th>1500nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation (max)</td>
<td>1.0 dB/km</td>
<td>0.75 dB/km</td>
</tr>
<tr>
<td>Bandwidth (min)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

a) Single-mode fiber optic cables shall have a YELLOW outer jacket color.
G. All intrabuilding fiber optic cables shall be plenum rated.
H. See section 12.01 EF / ER and TR Fiber Optic Components for termination hardware for fiber cables.

1.08 BUILDING VOICE BACKBONE
A. For intrabuilding voice backbone, run a minimum of (1) one 100-pair category 3 UTP cable from the EF / ER to each TR. Each voice backbone cable shall be homerun from TR to EF / ER. Intrabuilding voice cables shall be plenum-rated construction.
B. Intrabuilding voice backbone cables shall be sized so to cross connect (1) one pair of each 4-pair, UTP, voice station cable (served out of given TR) plus 25% (future). Voice backbone cables shall be in multiples of 50-pair (round up). Multiple cables may be required for calculated pair count.
C. See section 13.01 EF / ER and TR Voice Components for termination hardware for voice cables.

1.09 BUILDING VIDEO COAX (CATV) BACKBONE
A. For intrabuilding video coax backbone (CATV services), run a minimum .500, 75 ohm distribution cable from the EF / ER through each TR. Coil 30' of .500 distribution cable in each TR. Intrabuilding video cables shall be of plenum-rated construction.
B. See section 15.01 EF / ER and TR Video Coax (CATV) Components for termination hardware for coax cables.

1.10 BUILDING TELECOMMUNICATIONS GROUND BACKBONE
A. For intrabuilding telecommunication ground backbone, run a minimum #6Cu (#3/0 Cu recommended) Telecommunications Bonding Backbone (TBB) ground wire from the EF / ER through each TR. The TBB shall be a continuous conductor from the TMGB to the farthest TGB. Intermediate TGBs shall be spliced to the TBB with a short piece of bonding conductor.
B. In the EF / ER, provide a Telecommunications Main Grounding Busbar (TMGB). TMGB shall be a minimum size of 4" x 20" x 0.25" copper. TBB shall be connected to ground bus bar.
C. In each TR, provide a Telecommunications Grounding Busbar (TGB). TGB shall be a minimum size of 2" x 10" x 0.25" copper. TBB shall be connected to ground bus bar.

1.11 EF / ER AND TR FIBER OPTIC COMPONENTS
A. Interbuilding (OSP campus distribution) and intrabuilding (interior backbone) fiber optic cables shall be terminated in wall-mount termination cabinets or rack-mount termination shelves. Adapter panels shall be provided for all terminated fiber. Fusion spliced pigtails shall require splice cabinets / shelves for splice trays.
B. Multi-mode 62.5/125um fiber optic cables shall be terminated with ceramic tip ST type connectors.
C. Multi-mode 50/125um fiber optic cables shall be terminated with ceramic tip LC type connectors.
D. Single-mode fiber optic cables shall be terminated by FUSION splicing ceramic tip ultra PC polished SC pigtails or fusion splice-on SC UPC connectors. The last (2) strands of the OSP single-mode fiber optic cable shall be terminated with SC APC connectors.
E. All fan-outs, splice trays, and associated components shall be required for a complete and acceptable fiber optic system.
1.12 EF / ER AND TR VOICE COMPONENTS
A. Intrabuilding (interior backbone) voice UTP cables shall be terminated on wall-mount 100-pair (or 300-pair) 110 type termination blocks.
B. Voice station 4-pair UTP cables shall be terminated on wall-mount 100-pair (100-pair only) 110 type termination blocks. All 4-pairs shall be terminated.
C. The punch down sequence shall be the ANSI / TIA / EIA / 568B standard.
D. Wire troughs shall be installed above and below each 100-pair 110 type termination block.
E. All label strips, mounting hardware, and associated components shall be required for a complete and acceptable voice system.

1.13 EF / ER AND TR DATA COMPONENTS
A. Data station 4-pair UTP cables shall be terminated on 48-port, high density, 568B patch panels.
B. Mount patch panels on 19" hinged, wall-mount brackets, 19" x length required x depth required, wall mount equipment racks, or 19" x 7' floor mount equipment racks. If floor mount equipment racks are used, 10" wide, double sided, vertical wire management shall be provided between each rack and 6" wide, double sided, vertical wire management on the ends of the rack line up. Floor mount equipment racks are recommended.
C. Provide 2RU, horizontal wire management panels above and below each 48-port patch panel.
D. Provide (1) 7' and (1) 14' cat5e stranded patch cord per data port in TR.
E. All label strips, mounting hardware, and associated components shall be required for a complete and acceptable data system.

1.14 EF / ER AND TR VIDEO COAX (CATV) COMPONENTS
A. Provide video passive and active electronics necessary to have a complete and operational CATV system. Provide distribution amp in the EF / ER for the CATV system. CATV backbone distribution cable shall be neatly coiled using metal D-rings.
B. CATV taps shall be sized and installed as one tap port for every CATV station port. All CATV station cables shall be homerun. Splitters shall NOT be used on tap station output or on station cables.
C. Provide (1) 6' CATV RG-6 quadshield patch cord per CATV port in TR. Connect CATV patch cord from tap to terminated CATV drop.
D. Video station coax cables (RG-6 quadshield or RG-11 quadshield) shall be terminated on F-connector bulkhead patch panels. 6" minimum depth wall mount brackets shall be used for video bulkhead panels.
E. All connectors, taps, couplers, mounting hardware, and associated components shall be required for a complete and acceptable CATV video system where a signal level of 12 dBmV (+/- 3dBmV) @ 750 MHZ at the tap and a minimum signal level of 0 dBmV at the wall outlet will be assured.

1.15 BUILDING STATION CABLING
A. The primary method of wiring will be to install from the port to the nearest telecommunications room. The design distance SHALL NOT BE GREATER THAN 250 FEET. All cabling shall be tested against the EIA/TIA category standards. ALL data, voice, and coax (CATV) shall be homerun. Splitting, splicing, or daisy chaining of cabling is NOT permitted.
B. Data station cables shall be CAT-5e, 4-pair, UTP, plenum rated. Data cables shall have a BLUE outer jacket color.

C. Data cables for IP security cameras shall be CAT-6, 4-pair, UTP, plenum rated. Data cables for cameras shall have a BLUE outer jacket color.

D. Data cables for Dangerous Gas Monitoring System (DGMS) shall be CAT-5e, 4-pair, UTP, plenum rated. Data cables for DGMS shall have a RED outer jacket color.

E. Voice station cables shall be CAT-5e, 4-pair, UTP, plenum rated. Voice cables shall have a WHITE outer jacket color.

F. Video coax (CATV) station cables shall be RG6 quadshield (RG11quadshield for runs between 200 and 300 feet), plenum rated.

G. Fiber station cables shall be 2-strand, 50/125um laser optimized, multi-mode, round cordage, plenum rated. 50um fiber optic cables shall have an AQUA outer jacket color.

H. All cabling shall be tested against the EIA / TIA category standards and test reports shall be provided to the Using Agency and/or, Service Provider.

I. Do not locate cables near equipment such as light ballasts and power transformers which may emit electromagnetic interferences.

J. Provide a cable support system in accordance with EIA / TIA / 569A. Do not allow the cable to be laid on ceilings or strung through bar joist or rafters.

1.16 TELECOMMUNICATION OUTLET COMPONENTS / CONFIGURATIONS

A. For station workstation outlets provide a 2-gang box, plaster ring (either 1-gang or 2-gang), and (either 1 or 2) 1” conduit stub (s). Each station box shall have a dedicated conduit to accessible location. Daisy chaining of conduits (so that cables have to pull-thru another station box) is NOT permitted.

B. 1-gang faceplates shall be 6-port type and be able to accept 8-pin modular connectors, F-connectors, and LC, SC, and ST fiber connectors. Blanks shall be installed in unused spaces.

C. 2-gang faceplates shall be 12-port type and be able to accept 8-pin modular connectors, F-connectors, and LC, SC, and ST fiber connectors. Blanks shall be installed in unused spaces.

D. Floor mounted poke-thrus and/or floor boxes shall be able to accept 8-pin modular connectors, F-connectors, and LC, SC and ST fiber connectors. Fiber connectors are NOT recommended to be installed in poke-thrus. Blanks shall be installed in unused spaces. Coordinate with A/V multimedia requirements (floor boxes are commonly shared with A/V connectors / components).

E. Refer to the following list for recommended minimum cable set configurations based on room use/occupancy:

1. **Office:** (2) two outlets on opposite walls with (2) cat5e data and (1) cat5e voice per outlet per (normal 80sqft - 120sqft) office. Larger offices will have additional (2) cat5e data and (1) cat5e voice outlets for every 60sqft over 100sqft. In addition, select offices (Deans, Directors, Managers) will have (1) RG-6 (or RG-11) quadshield CATV cable.

2. **Cubicle / Workstation:** (1) one outlet (mounted in baseplate) with (2) cat5e data and (1) cat5e voice per cubicle. Size pathways to cubicle to support cables to be installed plus 50% future space. Provide (1) extra pathway (sized as above) for future cabling needs.
3. **Classroom**: (1) one outlet consisting of (2) cat5e data, (1) RG-6 (or RG-11) quadshield CATV, and (1) cat5e voice wall-mount telephone. Locate both outlets at front of room. See multimedia section for additional data requirements to support A/V equipment suite.

4. **Enhanced Classroom (Select classrooms)**: (1) one outlet consisting of (2) cat5e data, (1) RG-6 (or RG-11) quadshield CATV, (1) cat5e voice wall-mount telephone (located by entrance door), and (1) one (1) cat5e data outlet for each student seat. See multimedia section for additional data requirements to support A/V equipment suite.

5. **Laboratory**: (1) cat5e voice wall-mount telephone (located by entrance door), and (1) one outlet with (2) cat5e data outlet for every 6 feet of wall and/or free standing lab benches. Locate data ports to avoid fumehoods, sinks, etc...

6. **Conference Room**: (1) one outlet consisting of (2) cat5e data, (1) cat5e voice, and (1) RG-6 (or RG-11) quadshield CATV, and (1) one outlet with (2) cat5e data and (1) cat5e voice outlet for each 10 feet of wall. See multimedia section for additional data requirements to support A/V equipment suite.

7. **Computer Lab**: (1) one outlet consisting of (2) cat5e data, (1) cat5e voice, and (1) RG-6 (or RG-11) quadshield CATV; (1) cat5e data per computer workstation; and (1) cat5e data per network printer. See multimedia section for additional data requirements to support A/V equipment suite.

8. **Wireless Access Point**: (1) cat5e data (w/ 30’ coil) installed at 35’ intervals (grid) for future wireless locations. Since the intervals may vary, due to construction materials, space layout, and building size, coordinate with Using Agency for placement of these cable sets. Terminate cable with cat5e jack and test per specifications.

9. **IP CCTV Camera Location**: (1) cat6 data (w/ 30’ coil) installed at proposed camera location. Terminate cable with cat6 plug and test per specifications. Cat6 cable for exterior CCTV camera can be terminated on cat5e hardware.

F. Additional cable requirements will vary with each project. The Professional Design Team shall interview the tenants for any additional networking requirements. Some, but not all, additional requirements are listed below:

1. **Fire Alarm Panel** - (2) cat5e voice.
2. **Energy Management System Controller** - (2) cat5e data and (1) cat5e voice.
3. **Door Control System** - (2) cat5e data and (1) cat5e voice.
4. **Intrusion / Burglar Alarm Panel** – (1) cat5e data and (1) cat5e voice.
5. **Equipment Tamper Alarm Panel** – (1) cat5e data and (1) cat5e voice.
6. **Chiller Controller** - (2) cat5e data and (1) cat5e voice.
7. **Elevator Equipment Room** - (1) cat5e voice per elevator.
8. **Emergency Phone** - (1) cat5e voice.
9. **Buzzcard Cabinet** - (2) cat5e data (minimum).
10. **Access Control** (RedCloud) – (1) cat5e data (on secure side above door).
11. **Security Digital Recorder** - (2) cat5e data.

G. Workstation connectors for cat5e data and voice shall be 8-pin modular connectors (RJ-45 type).
H. Workstation connectors for coax CATV video shall be male compression type F-connector. Insert male F-connector into F-type female- female threaded connector in faceplate.

I. Workstation connectors for 2-strand 50um multimode fiber shall be LC connectors with LC adapter insert.

J. Data station jacks shall be YELLOW or shall be OFF-WHITE with YELLOW data icon.

K. Data station jacks for DGMS shall be RED or shall be OFF-WHITE with RED data icon.

L. Voice station jacks shall be WHITE or shall be OFF-WHITE with WHITE voice icon.

M. Coax F-connector inserts shall match the color of the faceplate.

N. Fiber optic inserts shall match the color of the faceplate. The adapter color shall be AQUA for 50um multi-mode fiber and BLUE for single-mode fiber. See Section 274100 for multimedia systems cabling requirements.

O. All offices will be wired as per these standards so that anyone relocating their office will be able to utilize the standard 10 / 100 / 1000 Base-T to access the network without any additional wiring.

1.17 DATA NETWORK ELECTRONICS

A. The data network electronics and associated components (UPS, power strips, fiber optic jumpers, etc...) budget shall be included as a sub line item in the loose equipment budget of the project budget. Data network electronics shall be funded by the project and purchased by the Using Agency. A purchase order number shall be supplied to the Using Agency for data network electronics purchase.

B. All data network equipment should be located in the EF / ER and/or the TRs. Do not allow active equipment to be placed in hidden or ceiling spaces.

C. The electronics in each TR shall be linked back to the EF / ER via Gigabit ethernet uplink interface over the building fiber backbone. Data network electronics will require (2) two strands of fiber (normally 50/125um multimode) from the building fiber backbone. Data network electronics (thru a combination of 48-port or 24-port blades) shall be able to activate 264 data ports. If TR has over 264 ports to activate, additional data network equipment could be required (w/ associated power / fiber requirements).

D. Each activated data port shall be 10 / 100 / 1000 Mbps switched ethernet. Provide sufficient data network electronics to activate ALL of the installed network ports. Calculate amount data network electronics for every EF / ER and TR to insure proper number of data network electronics, Gigabit interfaces, and fiber jumpers.

1.18 WIRELESS NETWORK ELECTRONICS

A. The wireless network electronics (APs, power injectors, antennas, etc...) and associated components budget shall be included as a sub line item in the loose equipment budget of the project budget. Wireless network electronics shall be funded by the project and purchased by the Using Agency. A purchase order number shall be supplied to the Using Agency for wireless network electronics purchase.

1.19 TELEPHONE SETS AND DIAL TONE
A. The telephone sets and dial tone budget shall be included as a sub line item in the loose equipment budget of the project budget. Telephone sets and dial tone shall be funded by the project and orders shall be placed by the Using Agency. A purchase order number shall be supplied to the Using Agency for telephone sets and dial tone.

B. Coordinate with Using Agency’s Telecom representative.

1.20 STANDARDS
G. National Electric Code

1.21 RECOMMENDED REFERENCE MATERIALS
A. Telecommunications Distribution Method Manual (TDMM)
B. Customer Owned Outside Plant Design Manual

1.22 SPECIFICATION SECTIONS
A. The following is a listing of sections of specifications which cover all aspects of networking. The design team is required to utilize these specifications. The specifications will be provided upon request from the Georgia Tech Facilities Engineering in printed and electronic form (Word).

1. Standard Cable Plant Labeling
2. Fiber Optic Cable Labeling
3. Outside Plant Fiber Optic Cable Labeling
4. Voice/Data Wiring Systems
5. Interior Fiber Optic Cable
6. Exterior Fiber Optic Cable
7. Interior CATV Wiring
8. Electronic Card Entry/Control System

END OF SECTION
273013 Emergency Phones

1.01 PHONE TYPES

A. Free Standing w/ Blue Light
 1. GAI-Tronics 234 - Free Standing Stanchion and GAI-Tronics 530-001 – Blue Light w/ strobe and GAI-Tronics 398-001 (with keypad and emergency button) or 397-001 (with emergency button only).

B. Wall Mount w/ Blue Light
 1. GAI-Tronics 234WM - Wall Mount Stanchion and GAI-Tronics 530-001 – Blue Light w/ strobe and GAI-Tronics 398-001 (with keypad and emergency button) or 397-001 (with emergency button only).

C. Wall Mount
 1. GAI-Tronics 394AL-001 (with keypad and emergency button). GAI –Tronics 393AL-001 (with emergency button only).

D. Flush Mount
 1. GAI-Tronics 398-001 (with keypad and emergency button). GAI –Tronics 397-001 (with emergency button only).

E. Elevator
 1. GAI-Tronics 397-001 (with emergency button only).

2.01 DIAL PAD

A. All phones mounted at building entry-ways shall have a dial pad to allow users to make courtesy campus or local calls, as needed. Free standing stanchions, parking decks, and other locations where phones are located, for security purposes, may or may not require a dial pad (as specified by the project owner).

B. Only retrofit elevator phones will not contain a dial pad, since it would not be accessible to the user.

3.01 POWER:

A. All phones with blue lights require 110V power on a dedicated circuit.

4.01 TELEPHONE:

A. All interior phones shall have (1) 4-pair cat5e plenum cable run to nearest telecom room. Cable shall be terminated on termination block in phone and on 110-block in telecom room. Label and test cable per G.T. specifications.
B. All exterior or exposed phones shall have (1) 4-pair cat5e OSP rated cable (in any conduit that is exposed to the elements). Cable shall be routed to nearest telecom room (cable shall splice to plenum rated cable if OSP rated cable extends over 50’ into building). Cable for exterior / exposed phones shall be protected with solid state protector unit (all pairs protected). Cable shall be terminated on termination block in phone and on 110-type protector block in telecom room. Label and test cable per G.T. specifications.

5.04 LOCATION:

A. Where construction of a building substantially transforms the undeveloped property or landscape of the immediate surrounding area by adding or altering pedestrian thoroughfares, or creating seating, gathering or multi-use greenspace areas, the installation of “Blue Light” emergency phones may be required to be associated with the building project as a means of supporting public safety needs. Consult with the Georgia Tech Police Department’s Physical Security Specialist for guidance.

END OF SECTION
274100 Multimedia Infrastructure

1.00 GENERAL

A. All of the equipment selected and designed by the Using Agency shall meet or exceed all applicable UL, NEC, and NEMA standards and requirements. The Using Agency may enhance the multimedia requirements for their project, but may not deviate below the minimum requirements as specified by this document.

B. In the case of renovations, it is recommended that the removal of all existing cables be reviewed, if appropriate. OIT/ART should be part of this review.

1.01 GENERAL BUILDING

A. A minimum of one (1) 20-Amp circuit per room should be dedicated for classroom multimedia use. Additional circuits might be required. Where additional circuits are required, they shall be on the same phase.

B. One (1) duplex receptacle at AV equipment cabinet location to provide power for Audio/Control Module (see 6.01. B. 3).

C. One (1) duplex receptacle at AV Input Plate Module (see 6.01. B. 1) location to provide power for instructional source equipment (Laptops, VCR's, etc).

D. One (1) duplex receptacle at projector location to provide power to the projector and switching equipment. Mount in ceiling tile next to telecom port. If no ceiling, mount in surface box next to telecom port.

E. One (1) duplex receptacle at all flat panel display locations. Coordinate mounting with telecom port.

F. One (1) duplex receptacle in 1-gang compartment of FSR-600P floor box. Note detail for correct compartment to locate receptacle.

G. One (1) junction box with 120v at screen location to provide power for motorized screen. Screens shall have 3-button, low voltage control (LVC) switch.

H. A minimum of Six (6) network connections per room should be dedicated for classroom multimedia use. Additional network connections might be required.

I. A minimum of two (2) cat5e data cables at AV equipment cabinet location to provide network connection for Audio/Control Module (see 6.01. B. 3). If room has video conference ability, then one (1) cat5e voice cable is required at AV equipment cabinet. If VCR / tuner card at AV equipment cabinet location, then one (1) RG-6 quadshield coax cable (or RG-11 quadshield if over 200’) is required.

J. A minimum of two (2) cat5e data cables at AV Input Plate Module (see 6.01. B.1) location. If AV Input Plate is for classroom podium or mobile lectern, then Three (3) cat5e data cables and (1) RG-6 quadshield coax cable (RG-11 quadshield if over 200’) in a tamper resistant plate (AMP # 503998-1) with stainless steel cover plate.

K. Two (2) cat5e data cables and (1) RG-6 quadshield coax cable at all flat panel locations. Provide plywood backing behind the sheetrock for flat panel mounting.
L. One (1) cat5e data cable at projector location. Mount in ceiling tile next to power receptacle. If no ceiling, mount in surface box next to power receptacle.

M. Four (4) cat5e data cables and (1) RG-6 quadshield coax cable in 1-gang compartment of all FSR-600P floor boxes. Note detail for correct compartment to locate telecom cables. Note is floor box used in conference room, telecom cabling shall be different.

1.02 GENERAL CLASSROOM

A. Pathways of sufficient capacity should be planned between the various components. Distance should not exceed 50 feet.

B. Standard Module Components

1. The AV Input Plate Module is placed in two 3-gang electrical housings typically at outlet height or in a floor box. Standard location is in the front of the room to the left of the black/white boards. Design basis for the floor box is FSR -600P (cover finish by Architect). In floor box, 1-gang compartment is for power, 1-gang compartment is for telecom cabling, 3-gang compartment is for AV, and 6-gang compartment is for AV. Stub 1-1/4” conduits from Av compartments (minimum of (1) 1-1/4” from 3-gang compartment and (2) 1-1/4” from 6-gang compartment) to AV rack location (NOTE: number of conduits could increase depending on use of floorbox). All connections to the input plate must be designed for quick disconnect. Refer to Section 2.01.1A of Section 274100 (Multimedia Infrastructure) for specific requirements.

2. The AV Control Selection Module is placed in a 2-gang electrical housing (except in the case when it is determined that speech reinforcement is required, then a 3-gang electrical housing is used) typically at switch height. Standard location is directly above the input must have a black power coat finish and be mounted as close to the ceiling as possible. Standard location is directly above the Input Plate and Control Selection Modules.

C. Optional Module Components

1. Rooms will require the installation of a new projection screen. All projection screens shall be fastened securely to the structural wall or ceiling, attachment to ceiling grid is NOT acceptable. Screens shall be mounted as close to the indicated wall as possible while far enough away to clear any obstacles. Screen height shall be determined by taking the distance from the last row of seats to the screen location dividing by 6 and rounding up to the next available size. Screen width shall be determined from the desired screen ratio W:H (4:3 standard, 16:9 in some cases). Refer to Section 2.02.1 of Section 274100 (Multimedia Infrastructure) for specific requirements.

2. Rooms with over 70 seats will require the installation of a speech reinforcement system. Refer to Section 2.02.3 of Section 274100 (Multimedia Infrastructure) for specific requirements.

3. Rooms with over 50 seats will require the installation of an Assistive Listening System. Assistive listening system shall comply with rule 120-3-20-.44 of the Georgia Accessibility Code, as required by section 120-3-20-.08 (19). Signage complying with the
provisions of 120-3-20-.41 of the Georgia Accessibility Code shall be installed to notify students of the availability of a listening system.

1.03 STANDARDS

A. Master Section 274100: Multimedia Infrastructure (Provided along with Drawing Details (DWG) upon request)

B. Any applicable UL, NEC, and NEMA standards and requirements.

C. Any applicable trade and industry standards.

D. State and National Electrical codes.

1.04 CONTACT INFORMATION

A. OIT/ET System Support Specialist
 Chris Hamlin
 404-385-0042
 chris.hamlin@oit.gatech.edu

END OF SECTION
274110 Distance Learning

1.01 GENERAL

A. The installation of equipment in a Georgia Tech classroom to facilitate the acquisition of lectures shall be considered an addition to any existing infrastructure already installed in the room, not necessarily a replacement of existing equipment. All previously installed classroom technology should continue to function essentially the same as it did prior to the installation of the Distance Learning (DL) equipment, and would not require the assistance of DL personnel for use during non-DL class operations.

1. After installation of the DL equipment, the classroom would be functional to capture audio, video and data delivered in that room, and to bring into that room audio, video and data to the extent that technology allows and with deference to the technologies available at the remote location(s) in the case of synchronous video conference connections.

2. Classroom control and access would continue as it was prior to the installation of the DL equipment.

3. To accomplish this, additional equipment may be installed both in the classroom, and in a separate control room.

2.01 PROGRAMMATIC DESIGN STAGE

A. The design professional(s) will meet with the Using Agency along with the Distance Learning and Professional Education Production Manager representative to determine the following site specific issues.

1. Establish a contact team for the Using Agency and Distance Learning representative.

3.01 PRELIMINARY DESIGN STAGE

A. Site specific requirements for Distance Learning.

1. Establish any Using Agency deviations from the multimedia infrastructure minimum requirements.

1.03 FUNDAMENTALS OF DESIGN

A. Control room

1. Separate room

2. Accessible without needing to enter classroom

3. Minimum dimensions - 8’ deep by 10’ wide

4. Adjacent to classroom highly recommended

5. Window into classroom if possible

6. Double pane, angled glass

B. HVAC

1. Accommodate a heat load of at least 6,000 BTU plus heat generated by human operator

2. System must be capable of keeping control room at a temperature of 72 degrees F plus or minus 2 degrees regardless of heating or cooling mode.

3. System should be controlled by sensors in control room, not in classroom or other area.
C. Power
1. Electrical circuit on the same phase as the in-room equipment if possible
2. 20 amp isolated ground circuit for console, quad outlet.
3. Minimum one additional duplex outlet on separate circuit for additional devices.

D. Room lighting
1. Angled fluorescent light fixtures angled back toward board so that instructor will not be lit from directly overhead.
2. Lighting should be even across the boards. Lighting in the area immediately in front of the boards and in the podium/desk areas where instructors will stand should also be evenly lit.

E. Boards
1. Electronic non-front projection whiteboards are preferred.
2. If conventional white boards must be accommodated, single row boards should be used. They should be porcelain coated steel. Sliding whiteboards should be avoided. Boards should not be recessed below the wall’s main surface. There should be no overhang above the boards that would cast a shadow on the board. The boards should match the aspect ratio for a television image, i.e., Height x width – 4x3 ratio. For a 48 inch tall whiteboard, this would mean multiples of 64 inches width.

F. Basic layout
1. The room should be oriented so as to provide adequate wall space to accommodate whiteboards and projection screens in simultaneous use. Typically this would dictate a room layout that is wider than it is deep.
2. The doors should be located at rear of room rather than the front of room.

G. Connectivity
1. Control room
2. Single mode fiber – 6
3. Computer network – 6
4. Network switch must be capable of being set up for multiple VLANs
5. Telephone – 1 analog
6. Classroom
7. Computer network – 4 hard wired (at instructor’s podium/desk)

H. Classroom Displays
1. Minimum one projection screen at front of classroom off to one side to allow simultaneous use of board and viewing of projected images. If space is adequate, provide two projection screens in classroom, each off to opposite sides of the room.
2. One projection screen at the rear of the classroom, primarily used in a video conference to view remote site(s).
I. Classroom audio
 1. Audio must be available at the podium/desk from all computers, whether installed or portable.
 2. Audio must be available from all additional sources, such as VCRs, DVD players, etc.
 3. A sound system must be installed capable of providing amplified audio back into the classroom from the control room talk-back system, remote video conferencing locations and other program sources.
 4. For classrooms where OIT is NOT supporting/funding the non-distance learning equipment installed in the classroom, voice reinforcement will not be considered as a required function.

J. Security
 1. A security system compatible with Bosch/Radionics equipment should be installed.
 2. Security system will be connected to data network.
 3. Network router will be configured to place this connection on VLAN.

K. Access
 1. Recommended control room access control is provided by Buzz card reader, particularly if OIT or other entities must also be able to access the control room. If this is not possible, door lock should be keyed so that key 2BAC1XX will open the lock.

L. Podium/desk
 1. Podium or desk should be located so as not to block the students’ view of whiteboards or images projected on screens if possible.
 2. Podium or desk should have a minimum of 4 hard wired data network ports. At least one port should be configured such that a user may access the network using the campus active directory.

M. Cabling
 1. Cabling will vary depending on whether or not OIT is supporting/funding the non-distance learning equipment installed in the classroom.
 2. In rooms where OIT is supporting/funding the non-distance learning equipment installed in the classroom, audio, video and computer (RGBHV) signals will likely already be run to some type of equipment rack where control, video switching and distribution, and audio equipment will already be installed. Most additional cabling to the distance learning equipment will be run from the OIT equipment rack to the control room.
 3. In rooms where OIT is NOT supporting/funding the non-distance learning equipment installed in the classroom, the following cabling runs must be made:
 a. Podium/desk to control room
 b. Audio
 c. Composite video
 d. RGBHV
 e. Control
f. Projectors to control room

g. Composite video

h. RGBHV

N. Control

1. Audio system to control room

2. It is recommended that suitable conduit be installed to accommodate the necessary cable runs.

3. Video cable should be Belden 1506 or equivalent precision video coaxial cable.

1.04 CONTACT INFORMATION

A. Distance Learning

Chris Lindsey

404-894-4116

Chris.lindsey@dlpe.gatech.edu

END OF SECTION
275313 Clock Systems

1.01 GENERAL

A. Synchronized clock systems shall be GPS wireless type, Primex Wireless or equal.

B. Synchronized clock systems shall consist of a GPS received, transmitter, repeaters, and system clocks. GPS receiver location shall be selected to ensure proper reception of GPS signal. Transmitter and repeaters shall be selected and located to ensure adequate signal strength at all system clock locations.

C. Where event signals are to be provided, they shall be integrated with the synchronized clock system.

END OF SECTION
281300 Access Control

1.01 GENERAL

A. As of September 27th, 2012, Georgia Tech has re-defined the standard for all new Access Control System (ACS) and Video Management/Surveillance System (VMS) installations. Any newly installed materials, systems and software must be compatible with, and able to integrate with, the RedCloud Access Control System and the Pelco Endura Video Management System. All materials and work shall be provided by ICE Automation Group. Georgia Tech has obtained a State Entity Contract (# 971AccessControlSecurity) through the State of Georgia, therefore, no substitutions will be allowed. Standard specifications are available from the Georgia Tech Office of Facilities Design and Construction upon request.

B. The ACS is run over the Georgia Tech Telephony Network. A PoE (Power over Ethernet) network data drop, which is connected to a telephony PoE switch or phybridge, must be provided above any door where Access Control devices are being installed.

END OF SECTION
282300 Video Surveillance

1.01 GENERAL

A. At minimum, one (1) Pelco camera will be installed at every exterior/perimeter building entrance and exit door. The camera shall be mounted on the secure side of the door to minimize the chances of the camera being vandalized, damaged or obscured. The camera’s field-of-view should be such that it provides the capability to capture images of everyone entering the door, allows for adequate facial identification, and allows it to be determined if people are carrying items into or out of the building. Additional cameras may be required at access-controlled points within the interior of the building. This will be determined based on the requirements of the building’s occupants, the value or sensitivity of the assets within the building, or the nature of the business intended to occupy the building.

B. Where construction of a building substantially transforms the undeveloped property or landscape of the immediate surrounding area by adding or altering pedestrian thoroughfares, or creating seating, gathering or multi-use greenspace areas, exterior cameras may be required to be associated with the building project as a means of supporting public safety needs. Consult with the Georgia Tech Police Department’s Physical Security Specialist for guidance.

END OF SECTION
283100 Fire Detection and Alarm

1.01 SCOPE
A. Analog-addressable fire alarm systems and components.

2.01 APPLICATION
B. A local low-voltage addressable fire alarm system shall be included in all new construction and in all major renovations. In smaller projects, extensions of existing systems shall be as appropriate for the type of system existing prior to the work. All fire alarm system work is subject to the approval of the Georgia Tech Fire Marshal. Alterations to existing systems shall include testing of the entire altered portion as well as a representative portion of the remaining system on completion of the work.

C. Fire alarm systems shall be dedicated to smoke and fire detection, alarm, and related control functions. Do not use fire alarm systems to provide security alarms or other functions.

3.01 MONITORING
A. All fire alarm systems shall be equipped with compatible digital alarm communicator transmitters using two public telephone system land lines to report alarm and trouble conditions. Setup of monitoring system components shall be coordinated with Facilities.

4.01 FIRE ALARM SYSTEMS
A. All campus fire alarm systems must meet the following minimum requirements. Additional functions, features and equipment may be required by code for certain occupancies.

1. Low-voltage addressable analog fire alarm control panel with standby battery power and automatic detector sensitivity testing satisfying the testing requirements of NFPA 72 current edition and 2010 ADA standards for Accessible Design. Fire alarm control panels shall be installed in electrical rooms or other such spaces not generally accessible to the public. The location must be chosen in consideration of the risk of damage to the fire alarm system in the event of fire or failure in other equipment located in the same space. Where programming means are not integral to the fire alarm control panel, furnish one complete set of all cables, equipment and software to the Owner. Furnish backup copies of system software as required by NFPA 72 where applicable.

2. Fire alarm system wiring in residential buildings shall be installed in conduit.

3. Smoke detectors for addressable systems shall be photoelectric type with sensitivities selectable from the FACP (Fire Alarm Control Panel). Heat detectors shall be addressable where available ratings meet the needs of the project. Otherwise, provide appropriately rated heat detectors and addressable monitor modules.

4. Device addresses shall be manually set by means of switches on each device or addressable base or shall be set electronically. Where electronic addressing means is utilized, all equipment and software necessary to program device addresses shall be furnished by the contractor and delivered to the Owner. Rooms required to provide communications features will comply with 2010 ADA Standards and applicable sections of NFPA 72 current edition.
5. All fire alarm systems shall be equipped with a common event reporting digital alarm communicator transmitter compatible with the existing campus monitoring system which supports Silent Knight format 4/2. Provide two telephone lines at each DACT. Program DACTs and establish proper reporting to the campus monitoring system. DACT reporting codes shall be programmed to match those of other campus DACTs. Where programming means is not integral to DACTs, all equipment, cables and software necessary for DACT programming shall be delivered to the Owner.

6. For non-residential buildings, a partial automatic detection system is required consisting of detectors in common areas, lobbies, corridors, stairs, mechanical spaces and normally unoccupied areas. This requirement is in addition to minimum code requirements and applies in sprinklered facilities as well as non-sprinklered facilities. Heat detectors shall be installed in mechanical spaces and other areas in which the expected environment is unsuitable for the proper operation of smoke detectors. 135°F detectors shall be combination fixed temperature and rate-of-rise, addressable type. Higher temperature rated detectors shall be conventional type with rate-of-rise sensing except that rate-of-rise sensing shall be omitted where environmental conditions might cause false operation. Conventional detectors shall be grouped in logical zones and monitored by addressable modules. Where detectors are installed, they shall be spaced and installed in accordance with requirements of NFPA 72 for required detectors.

7. For residential buildings, a complete automatic fire detection system including fire detection, alarm and communications and a complete automatic smoke detection system complying with NFPA 72 and providing total coverage is required. This requirement is in addition to minimum code requirements and applies in sprinklered facilities as well as non-sprinklered facilities. Heat detectors shall be installed in mechanical spaces and other areas in which the expected environment is unsuitable for the proper operation of smoke detectors. Where detectors are installed, they shall be spaced and installed in accordance with requirements of NFPA 72 for required detectors. Apartments shall be equipped with at least one system notification appliance, system smoke detectors and a system heat detector in the kitchen area. All residential buildings are to be fully sprinklered and shall include waterflow and tamper switches for fire alarm system alarm and trouble signal initiation.

8. All smoke or heat detectors installed within the building shall be system detectors powered and supervised by the fire alarm control panel.

9. Notification appliances shall be provided throughout and shall be both audible and visual complying with 2010 ADA standards and NFPA 72 current edition. Spacing, locations, intensity and sound levels for all signals shall comply with NFPA 72 requirements. Audible signals shall be ANSI temporal 3.

10. Provide elevator recall for all new and existing elevators in the affected building(s). Designated floors shall be as selected by the Georgia Tech Fire Marshall.

11. Provide smoke detection in air handling systems and fan shutdowns and damper closure in accordance with applicable codes for new and existing air handling systems in the affected building(s).

12. A weatherproof strobe is required on the building exterior near the designated entrance (the entrance nearest the remote annunciator).
13. SLC and NAC circuits shall be designed such that spare capacity is provided. No circuit should be loaded to more than 75% of its capacity. NAC circuit voltage drop as installed shall not exceed 75% of the maximum allowed by the manufacturer at the last appliance on each circuit. Submittals shall include battery and voltage drop calculations, shop drawings and other documentation as needed to demonstrate compliance.

14. A carbon monoxide (CO) monitor system shall be installed where required by the mechanical design requirements. Where a CO monitor system is required, CO monitors shall be equipped with battery backup capable of powering the system for a minimum of 48 hours, telephone lines, and a DACT programmed to report CO alarms to the campus Silent Knight monitoring system. Provide a remote display located outside the mechanical space. CO monitor system control and alarm functions shall be as specified in the mechanical design requirements.

15. Personnel responsible the installation of fire alarm systems shall be licensed as low-voltage or low-voltage alarm contractors and shall have NICET level II certification or factory certification. Personnel responsible for testing and/or maintenance of the fire alarm system shall have NICET Level II certification, factory certification or shall be an employee of a UL listed testing and maintenance organization.

16. Contractor shall provide all software programs and tools for use by Georgia Tech technicians to service the Fire Alarm system.

17. Service and part distribution companies for the Fire Alarm system must be authorized by the Fire Alarm system manufacturer. In addition, these companies must have at least three consecutive years in the Fire Alarm service business. Submit the name and contact information of a local factory-authorized service agency. The service agency must be registered as a vendor with Georgia Tech Business Services. Submit evidence of vendor registration. For information regarding vendor registration, see http://www.procurement.gatech.edu/vendorinfo.php

5.01 REMOTE ANNUNCIATOR

A. A remote annunciator shall be provided. Remote annunciators shall consist of an alphanumeric annunciator panel and framed passive graphic display. Provide user-replaceable floor plans behind a clear front panel with a solid backing panel and overall framing system. Floor plans shall show complete floor plans with legible room numbers. See project drawings for additional requirements.

B. Annunciators shall include an alphanumeric display and associated indicating lamps duplicating the display and indicating lamps at the FACP. Switches shall be provided to permit acknowledging, silencing and resetting functions for alarm, supervisory and trouble signals. The alphanumeric display shall provide English language descriptions of device location, type and status for each alarm, supervisory and trouble event. Access to these switches shall be controlled by a campus standard Best lock. Locks shall be Best 7-pin in accordance with the campus keying system. Key codes for combinating by Best will be furnished by the Owner upon request.

C. Alphanumeric displays and status indicators shall be visible with all doors closed and locked.
6.01 DOCUMENTATION AND TRAINING

A. For all new systems and all modifications of existing systems, the contractor shall submit a Record of Completion using the form printed in NFPA 72.

B. The contractor shall furnish all labor, materials and documentation needed to comply with the inspection requirements of the Authority Having Jurisdiction (AHJ).

C. Measure and report ambient sound levels and fire alarm signal sound levels in representative spaces throughout the facility to prove compliance with NFPA 72 requirements for audibility. Where it is found that additional devices are needed to ensure compliance, provide the necessary devices. Additional devices required to meet this requirement shall not constitute grounds for change-orders. Select locations for sound level measurements in cooperation with the Georgia Tech Fire Marshal. In residence halls and apartment buildings, assume an average ambient sound level of 55dBA and a maximum 60-second sound level of 75dBA except where there is reason to expect higher values or where field measurements indicate higher values.

D. System documentation shall include a bill of materials, as-built fire alarm system floor plans showing placement of all components, routing of wiring, point addresses, NAC numbers, and wire types and sizes, as-built arrangement of modular components within the fire alarm control panel and numbered terminal strip connections for external wiring connections, point address list and point names for annunciation, battery calculations, copies of the manufacturer's technical literature on all components of the fire alarm system, bound copies of the proper operating procedures for the fire alarm system and procedures for cleaning and maintaining the system, a Record of Completion in accordance with NFPA 72, evidence of installer licensing and certifications, UL and FM approvals and UL listing for system components.

E. Construction documents shall include plans showing the location of all devices and equipment, riser diagrams, special wiring requirements, and a plan of the remote annunciator.

F. Furnish a training and familiarization session conducted by the manufacturer’s representative for designated Georgia Tech personnel.

END OF SECTION
283300 Fuel-Dangerous-Gas Detection and Alarm

1.01 GENERAL

A. The scope of this section is to install the necessary campus standard toxic gas sensors and integrate these requirements into the campus wide Hazardous Dangerous Gas Monitoring and Control System. JCI provides the installation services to Georgia Tech under their Building Automation Controls contract.

B. The designer may request for a copy of Georgia Tech standard specifications 283300/15722 to include in his project. An example of an existing installation is at the Bunger Henry Bldg.

C. The project shall furnish plans and specifications to program, install, adjust, calibrate, and make ready for use all sensors, switches, relays, controllers, wiring, and accessories required for a complete and totally functioning DGMCS Monitoring and Control System. Work includes the integration with existing DGMCS systems and testing of the following components:
 1. Hazardous (toxic, flammable, explosive corrosive, etc.)
 2. Oxygen depletion monitoring.
 3. Gas cabinets’ shutdown control system.
 4. Hazardous alarm notification system.
 6. Miscellaneous instrumentation as described on the plans.
 7. Interface to the building automation system to provide the appropriate actions to ensure the safety of the occupants.
 8. Install a touch screen DGMCS terminal next to the building fire alarm graphic annunciate panel in the front lobby/entrance of the building or the location designated for the fire department to respond to the building.

D. Georgia Tech has selected as a campus wide system the Honeywell Analytics MIDAS sensors and Honeywell Analytics DGMS monitoring server system software. Georgia Tech as established an integrated campus wide DGMS system which consist of a central server located at the Rich Computing Center. This server provides internet access to the authorized personnel to reset alarms and to remotely access the system. Each building will have a Touch Screen monitor in the lobby to allow building occupants access to the DGMS system.

E. The main components the designers will need to specify is the:
 1. Dangerous gas specific sensor installation
 2. Valves or interfaces to turn off the supply of the Dangerous substance
 3. Interface with the building automation system to purge or evacuate the space.
 4. Send a signal to the DGMS server witch will in turn notify by cell phone text messaging the appointed laboratory personnel and the Georgia Tech Environmental Health and Safety officers of the condition. Also the DGMS will notify the Georgia Tech Police via an emergency response digital dialer. The Georgia Tech Police will then contact the Atlanta Hazardous Material unit of the hazardous condition.
5. All sensor alarms shall be hard wired from the sensor to a relay panel to execute the required safety control logic. Sensor alarm controls actions SHALL NOT be transmitted via ethernet unless the DGMS system has a dedicated isolated ethernet system separate from the building and campus network system.

6. The design documents shall provide a sensor action matrix that identifies each sensor, each alarm level and each action for each devise to ensure occupant safety. Each alarm shall secure the dangerous gas at it source, as the dangerous gas enters the lab or work space and secure the tool.

F. Hazard Evacuation and Notification

1. The intent of this is to produce a complete and functioning Hazard Evacuation Notification (HEN) System.

2. Equipment to be furnished, installed and wired:

3. Visual and audio notification devices and complete wiring and conduit work.

4. It is the intent of this Section that all equipment and devices furnished and installed under this project be properly connected and interfaced with other equipment so as to render the installation complete for successful operation regardless of whether all connections and interfacing.

5. The equipment installation shop drawings shall be by Georgia Tech Facilities Engineering Office.

END OF SECTION
300000 CIVIL AND SITE WORK
310000 Earthwork

1.01 GENERAL:
 A. This section address requirements for earthwork, including clearing, grading, excavation and fill and excavation support and protection related to building construction and infrastructure projects on the Georgia Tech Campus.

2.01 DESIGN GUIDELINES
 A. Maximum slope for landscape planting and lawn areas is to be 3H:1V (3-feet horizontal to 1-foot vertical).
 B. Landscape planting and lawn areas are to slope away from building at 3% minimum grade for the first ten feet.
 C. Minimum recommended grades:
 1. Grassed lawns and swales - 3%
 2. Paved gutters and walkways - 1%
 3. General Parking Areas - 2%
 4. Asphalt paved parking areas and driveways- 2%
 5. Concrete paved parking areas and driveways - 1%
 E. Design is to strive to achieve a balanced cut and fill to minimize the need for haul-in of additional fill material or the need to dispose of excess soil materials.
 F. Design is to strive to minimize the extent of rock removal required for the construction of building foundations and underground utilities.

3.01 CONSTRUCTION DOCUMENT REQUIREMENTS:
 A. Construction plans to show existing contours as dashed lines and the proposed contours as solid lines.
 B. Interval for existing grade and finished grade contours to be 1' - 0".
 C. Finish grade at the building shall be 6" (minimum) below the floor line.
 D. Include the following note on grading plans:
 1. Contractor is responsible to contact Georgia Tech Facilities Infrastructure at 404-385-6000 for information regarding utilities locate request. Submit completed locate request for Georgia Tech owned utilities at least 72 hours prior to any excavation.
2. Technical specifications are to require the Contractor to submit drawings and supporting calculations for trench support systems for utility trenches 5 feet or more in depth. Submittals for trench support systems shall be prepared, sealed, and signed by a professional civil or structural engineer currently registered in the State of Georgia.

3. For projects that will require blasting for removal of mass rock or trench rock, the technical specifications are to require the Contractor to prepare and submit a comprehensive Blasting Plan and obtain approval before the start of blasting operations. The Blasting Plan shall identify the proposed methods and procedures for conforming to the State of Georgia Blasting Standards Act, O.C.G.A. 25-8-2, 2009, the State of Georgia Utility Facility Protection Act, O.C.G.A. 25-9-1, and including seismograph monitoring.

1.04 SUSTAINABLE CONSTRUCTION

A. Georgia Tech has the stated objective for the design and construction of all building projects to reduce impacts on the environment surrounding the project site. To the maximum extent feasible and practicable, the grading design shall work with existing topography and shall consider the use of retaining walls to minimize the extent of cut and fill for the project.

1. For projects being developed of previously developed sites restore or protect a minimum of 50% of the site (excluding the building footprint) or 20% of the total site area (including building footprint), whichever is greater, with native or adapted vegetation. Projects may use vegetated roof area in calculation if the plants are native or adapted, provide habitat, and promote biodiversity

2. For Greenfield sites (site not previously disturbed from their natural state) limit all site disturbance to the following parameters:
 a. 40 feet beyond the building perimeter or other structures
 b. 10 feet beyond surface walkways, patios, surface parking and utilities less than 12 inches in diameter
 c. 15 feet beyond roadway curbs and main utility trenches
 d. 25 feet beyond constructed areas including stormwater detention infrastructure, sport fields, etc. that require additional staging areas to limit compaction.

END OF SECTION
312500 Erosion and Sedimentation Controls

1.01 GENERAL:
 A. This section addresses requirements for permanent erosion and sediment control and site stabilization.
 B. Design professional is to coordinate permanent site stabilization for erosion control with the site grading plans, the stormwater management plans, and the landscape planting plans.

2.01 PERMITTING
 A. See Section 015713, Temporary Erosion and Sediment Control, for permitting requirements.

3.01 PERMANENT SITE STABILIZATION
 A. The design and nature of permanent erosion control features is to be consistent with the landscape design principles defined in the Georgia Tech Landscape Master Plan.
 B. Vegetative materials specified for permanent erosion control are to be consistent with the landscape planting materials identified in the Georgia Tech Landscape Master Plan.
 C. Naturalized spaces to provide stormwater treatment and stormwater velocity controls are preferred over mechanical systems

4.0 SUSTAINABLE CONSTRUCTION
 A. Georgia Tech has the stated objective for the design and construction of all building projects to reduce impacts on the environment surrounding the project. As indicated in Paragraph 1.0 above, for project sites of less than one-acre and not requiring a Land Disturbance Permit on any other basis, the construction documents prepared by the design professional are to include erosion and sediment control plans and specifications as needed to meet the requirements of the Georgia EPD Manual for Erosion and Sediment Control Sixth Edition 2014 and 2003 EPA Construction General Permit or any local standards and codes, whichever is more stringent. The plan must describe erosion and sediment control measures to accomplish these objectives:

 1. Prevent loss of soil by storm water runoff and/or wind erosion during construction activities.
 2. Protect topsoil by stockpiling for reuse
 3. Prevent sedimentation of storm sewers or receiving streams.
 4. Prevent pollution of the air with dust and particulate matter.

 B. Placement of erosion and sediment control measures is to be coordinated with the site planning, earthwork and storm drainage design to the maximum extent feasible to conserve existing natural areas and prevent loss of soil by storm water runoff and/or wind erosion during construction activities. Erosion and sediment controls measures must meet or exceed the requirements of the Georgia EPD Manual for Erosion and Sediment Control Sixth Edition 2014 and 2003 EPA Construction General Permit or any local standards and codes, whichever is more stringent.

END OF SECTION
320000 Exterior Improvements

1.01 GENERAL:

A. This section addresses general construction plan requirements for exterior improvements on the Georgia Tech campus.

2.01 SITE PLANS:

A. Since all of the systems to support the building come together in the Site Plan, adequate emphasis must be placed on its preparation. It requires careful study, accurate and complete site information, and careful preparation to be clearly understood. The site design impacts a major cost of the project as well as the safety of the users. Liability and maintenance can be greatly minimized with proper site design.

B. Orient the building on the site to present a good appearance from the street with attention to parking, service access, pedestrian circulation and conforming to all zoning ordinances.

C. The site plan shall be drawn to a scale of 1 inch equals 20 feet, unless approved otherwise by the Georgia Tech Office of Facilities Design and Construction Project Manager.

D. Site Plan shall include the following information at minimum:

2. Steps in sidewalks and at building entrances shall have 14-inch treads and 6-inch risers.

4. Curbs and gutters with dimensions for width, location and material type.

5. Survey control points.

6. Boundary surveys for the site including bearings and distances for each property line or lease limit line shown.

7. The location and names of all adjacent streets.

8. Rights-of-ways and easements, for utilities, streets, access, etc.

9. Location and identification of all utilities, including type size and material. See Section 022100 Surveys.

10. Off-street parking in the amount required by the local zoning ordinance, including handicap parking. Provide minimum number of parking spaces required by local code.

11. Notations indicating ingress and egress for vehicular traffic

12. Parking lot layout including parking space markings and pavement markings to define traffic circulation patterns. Indicate pavement type, layout dimensions, and cross-slope. Maximum grades for parking lots and spaces shall conform to 28 CFR Part 36, ADA

13. Fences.
15. Retaining walls.
17. All relevant items for property survey.
18. North arrow, graphical scale and survey legend.
19. Dimensions of building with appropriate ties to property lines or survey control for construction layout.
20. Property setbacks of building as required by zoning.
21. Indicate hardscape materials, coordinated with the landscaping plans.

E. Provide dimensioned details for all structures on the site, including sidewalks, curbs and gutters, steps, retaining walls, fences, parking stall bumpers, handrails, lighting fixtures, handicapped access ramps, traffic signs, etc. Each detail is to be cross-referenced to the plan location where application of the detail is made.

3.0 SUSTAINABLE CONSTRUCTION

A. Georgia Tech has the stated objective for the design and construction of all building projects to reduce impacts on the environment surrounding the project. To the maximum extent feasible and practicable, the site design shall minimize the disturbance of existing site features and habitat. For green field sites, disturbance limitations are as follows:

a. 40 feet beyond the building perimeter

b. 10 feet beyond surface walkways, patios, surface parking and utilities less than 12 inches in diameter.

c. 15 feet beyond primary roadway curbs and main utility branch trenches.

d. 25 feet beyond constructed areas with permeable surfaces (such as pervious paving areas, storm water detention facilities and playing fields) that require additional staging areas to limit compaction in the constructed area.

For previously developed areas, a minimum of 50% of the site (excluding the building footprint) or 20% of the total site area (including building footprint), whichever is greater, must be restored or protected with native or adapted vegetation.
B. Site planning is to include designation for placement of bike racks to provide bicycle storage and for building users. For projects excluding residential, the project design shall provide secure bicycle racks and/or storage within 200 yards of a building entrance for 5% or more of building users measured at peak periods. For residential projects, covered storage facilities for securing bicycles must be provided for 15% or more of the building occupants.

C. Site planning for parking facilities is to include preferential accommodations for FEV’s (fuel efficient vehicle), car pool and van pool. Each new parking facility (deck or surface parking) shall provide a minimum of 3% of the total parking capacity as preferred parking spaces for low-emitting (LEV), fuel-efficient (FEV), and Zero Emission Vehicles (ZEV). In addition, each new parking facility shall provide preferred parking spaces equal to a minimum of 5% of the total parking capacity of car and van pool parking.

 a. Low-emitting, fuel-efficient vehicles, and those that are classified as Zero Emission Vehicles (ZEV) by the California Air Resources Board or have achieved a minimum green score of 40 on the American Council for an Energy Efficient Economy (ACEEE) annual vehicle rating guide. Preferred parking spaces are those that are closest to the main entrance of the parking facility (excluding spaces designated for disabled persons).

 b. Signage shall be provided to indication which spaces are LEV, FEV, Car/Van Pool preferred parking spaces within the parking facility.

END OF SECTION
321000 Bases and Paving

1.01 GENERAL

A. This section addresses requirements for sub-base courses, aggregate base courses, asphaltic base courses, asphaltic concrete paving and portland cement concrete paving for parking lots, roads, athletic playing surfaces, curbs and gutters, sidewalks and multi-use paths on the Georgia Tech Campus.

B. Type of surface material to be specified for pavements and sidewalks is to be coordinated with the Georgia Tech Office of Facilities Design and Construction at the Schematic Design Phase.

C. Materials for athletic playing surfaces and recreational trails are to be consistent with the Georgia Tech Athletic Association Standards and the Georgia Tech Landscape Master Plan. The design professional is to coordinate with the Georgia Tech Office of Facilities Design and Construction for current standards.

D. Materials for special paving surfaces such as precast concrete pavers, manufactured stone pavers, texturized asphalt or recycled shredded rubber matrix products are to be consistent with the Georgia Tech Landscape Master Plan.

2.01 BASE COURSES

A. Aggregate base course is to be provided for all pavements including parking lots, driveways, streets, curbs and gutters, athletic playing surfaces, sidewalks and multi-use paths.

B. Aggregate base course material is to be clean, crushed graded aggregate produced within not more than 500 miles of the project site, per Paragraph 6.0B below.

C. Aggregate base course material shall conform to Section 815 of the Georgia DOT Standard Specifications. Material shall meet all requirements of Paragraph 815.2.01 and 815.2.02. Material may be Group 1 or Group 2.

D. Aggregate source shall be approved by Georgia DOT Office of Materials and Research. Contractor is to be required to provide written documentation of current approval.

3.01 ASPHALTIC CONCRETE PAVEMENT

A. Asphaltic concrete pavement base courses for asphalt paved parking lots, driveways, streets and trails are to be 19mm Superpave per the Georgia Department of Transportation Standard Specifications for Construction of Transportations Systems, current edition.

B. Asphaltic concrete surface courses for asphalt paved parking lots, driveways, streets and trails are to be 9.5 mm Superpave, Level B per the Georgia Department of Transportation Standard Specifications for Construction of Transportations Systems, current edition.

C. Asphaltic concrete mixes are to conform to Section 400 of the Georgia DOT Standard Specifications for Construction of Transportations Systems, current edition.

D. Materials and application of bituminous tack coats are to be in accordance with Section 413 of the Georgia DOT Standard Specifications for Construction of Transportations Systems, current edition.

E. Materials and application of bituminous prime coats are to be in accordance with Section 412 of the Georgia DOT Standard Specifications for Construction of Transportations Systems, current edition. Bituminous prime coat is to be specified for asphaltic concrete pavement sections with a total combined asphalt thickness of less than 5-inches.
F. Asphalt plant is to be approved by Georgia DOT Office of Materials and Research. Contractor is to be required to provide written documentation of current approval.

G. Aggregate material for asphaltic concrete mixes is to be produced within not more than 500 miles of the project site, per Paragraph 6.0B below.

H. Design professional is to coordinate with the Georgia Tech Office of Facilities Design and Construction for current standard asphalt pavement cross-section applicable to parking lots, driveways, streets and roads.

4.01 PORTLAND CEMENT CONCRETE PAVEMENT

A. Portland cement concrete for concrete paved parking lots, driveways, streets and trails is to be in accordance with Section 500 of the Georgia Department of Transportation Standard Specifications for Construction of Transportations Systems, current edition.

B. Portland cement concrete for concrete paved parking lots, driveways, streets, sidewalks, trails, and curbs and gutter is to have a minimum 28-day compressive strength of 3,500 psi.

C. Concrete plant is to be approved by Georgia DOT Office of Materials and Research. Contractor is to be required to provide written documentation of current approval.

D. Aggregate material for portland cement concrete mixes is to be produced within not more than 500 miles of the project site, per Paragraph 6.0B below.

E. If attainable, portland cement for portland cement concrete mixes is to be produced within not more than 500 miles of the project site, per Paragraph 6.0B below.

F. Design professional is to coordinate with the Georgia Tech Office of Facilities Design and Construction for current standard concrete pavement cross-section applicable to parking lots, driveways, streets, roads, and sidewalks.

5.01 PAVEMENT MARKINGS

A. Pavement markings for the delination of traffic movements and parking spaces are to be thermoplastic in accordance with Section 653 of the Georgia Department of Transportation Standard Specifications for Construction of Transportations Systems, current edition.

B. Colors and configuration for pavements markings are to be consistent with the Manual for Uniform Traffic Control Devices and the requirements of Georgia Tech’s Office of Auxiliary Services. Design professional is to coordinate with Georgia Tech Office of Facilities Design and Construction to obtain Auxiliary Services current standards.

6.01 CONSTRUCTION DOCUMENT REQUIREMENTS

A. Pavement type and thickness are to be indicated on the Site Plan.

B. Provide a typical cross-section detail for each type of pavement indicated to be used on the construction plans.

C. Construction details for special paving surfaces such as precast concrete, manufactured stone pavers, texturized asphalt or recycled shredded rubber matrix products are to be consistent with the Georgia Tech Landscape Master Plan.
7.01 SUSTAINABLE CONSTRUCTION

A. Georgia Tech has the stated objective for the design and construction of all building projects to reduce impacts on the environment surrounding the project. To the maximum extent feasible and practicable, the site design shall consider the use of concrete pavement for new parking lots and driveways to minimize heat island effects. This includes a strong preference for projects requiring asphalt paving to consider use of surface treatments that increase the pavement solar reflectance index (SRI) to 29 or above to assist with reducing heat island effect. For more information see Caltrans Division of Research and Innovation “Cool Pavements Research and Technology” report dated September 1, 2011. Also see Micro Overlay product named E-KreteTM manufactured by PolyCon of Madison, Mississippi.

B. To the maximum extent feasible and practicable, the construction bid documents are to specify that no less than 50% of materials (in terms of materials and products cost) for pavement construction be harvested, extracted, or manufactured in the State of Georgia. It is Georgia Techs strong preference to begin with the closest local (Atlanta Metropolitan Area) region first, and then move outward within the state, and finally up to the 500 mile region beyond.

C. Stone, asphalt and concrete waste materials resulting from the demolition of existing pavements are to be salvaged for recycling or re-use. These materials are to be referenced in the construction waste management plan required for the project as delineated in section 017419 4.01 A of the Yellow Book.

D. Portland cement concrete specified for parking lots, driveways and sidewalks is be reinforced with synthetic fibers in lieu of welded wire fabric or steel reinforcing bars wherever possible to maximize potential for recycling of concrete waste materials in the future.

E. The use of porous concrete pavement and other porous paving materials including porous paver systems is to be considered for parking lots, driveways, sidewalks and trails to minimize storm water runoff.

1. Sites with Imperviousness ≤ 50% implement a stormwater management plan that prevents the post-development peak discharge rate and quantity from exceeding the predevelopment peak discharge rate and quantity for 2-year 24-hour design storm. Or Implement a stormwater management plan that protects receiving stream channels from excessive erosion in accordance with Georgia EPD Manual for Erosion and Sediment Control Sixth Edition 2014. The stormwater management plan must include stream channel protection and quantity control strategies.

2. Sites with Imperviousness > 50% implement a stormwater management plan that results in a 25% decrease in the volume of stormwater runoff from the 2-year 24-hour design storm.

END OF SECTION
323100 Fences and Gates

1.01 GENERAL:
 A. This section addresses requirements for permanent and temporary fences and gates.
 B. It is recognized that the need for fencing for pedestrian and vehicular safety and for security is
 unavoidable on the Georgia Tech campus. As much as possible, the fence placement and the
 selection of fence materials and colors should result in a fence that blends in to be an integral
 part of the campus landscape.
 C. Chain link fencing is to be used for temporary construction fencing including tree protection
 fencing, and for permanent security fencing for mechanical yards, utility installations, etc.
 D. Architectural metal fencing and gates shall be consistent with the Georgia Tech Landscape
 Master Plan, incorporated here by reference.

2.01 FENCE MATERIALS
 A. Chain link fencing for temporary construction fencing including temporary tree protection is to
 be 9 gage galvanized steel wire, 2-inch mesh.
 B. Chain link fencing for permanent security fencing is to be 9-gage galvanized steel wire, 2-inch
 mesh, vinyl-coated. Vinyl coating color is to be approved by the Georgia Tech Office of
 Facilities Design and Construction.
 C. Materials and colors for architectural metal fencing and gates shall be consistent with the
 Georgia Tech Landscape Master Plan, incorporated herein by reference.
 D. The height of fences is to be determined on a site specific case by case basis.
 E. Security bollards are to be provided on an as needed basis to protect buildings, utility
 structures, and utility appurtenances from damage by vehicular traffic at loading docks, service
 entrances, mechanical room, etc.
 F. Removable bollards shall be consistent with the Georgia Tech Landscape Master Plan.

3.01 SUSTAINABLE CONSTRUCTION
 A. Georgia Tech has the stated objective for the design and construction of all building projects to
 reduce impacts on the environment surrounding the project. Waste materials resulting from
 the demolition of existing fencing is to be salvaged for recycling or re-use as part of the
 required construction waste management plan for the project. Salvaged or recycled fencing
 will contribute to the required percentage of recycled construction and demolition materials for
 the project, which is defined on a project-by-project basis.
 B. To the maximum extent feasible and practicable, the construction bid documents are to specify
 that no less than 10% of materials (in terms of materials and products cost) for fence
 construction be harvested, extracted, or manufactured in the State of Georgia. It is Georgia
 Techs strong preference to begin with the closest local (Atlanta Metropolitan Area) region
 first, and then move outward within the state, and finally up to the 500 mile region beyond.
END OF SECTION
323200 Retaining Walls

1.01 GENERAL:
 A. This section addresses requirements for site retaining walls that are not part of or attached to a building structure.

2.01 STRUCTURAL DESIGN STANDARDS
 A. Structural design calculations are required for all retaining walls more than 3 feet in height. Structural design shall be performed by a registered professional engineer.
 B. Soils parameters used in design of retaining walls shall be based on site specific geotechnical data provided in subsurface investigation report as prepared by a registered professional engineer or professional geologist. The use of assumed soil parameters for design of retaining walls is not acceptable.

3.01 RETAINING WALL MATERIAL REQUIREMENTS
 A. Retaining walls are to be constructed of granite or of concrete with brick veneer with precast concrete caps conforming to the Georgia Tech Landscape Master Plan, incorporated herein by reference.
 B. Retaining walls are to be constructed with vertical drainage system behind the wall with an outlet pipe connected to the storm drainage system, or with a direct outlet to a drainage channel. Weep holes as a means of drainage for retaining wall systems are not to be used except as specifically approved by Georgia Tech’s Office of Facilities Design and Construction.
 C. Drainage pipes that discharge directly to a drainage channel are to be protected by a headwall and are to be supplied with a TideFlex or similar type valve to prevent surcharging of the pipe during highwater conditions.
 D. A built-in place mockup of retaining wall is to be provided by the construction contractor and approved by the Georgia Tech Office of Facilities Design and Construction in advance of wall construction.

4.01 SUSTAINABLE CONSTRUCTION
 A. Georgia Tech has the stated objective for the design and construction of all building projects to reduce impact of the project on the surrounding environment. To the maximum extent feasible and practicable, the site design shall consider the use of retaining walls to minimize disturbed areas. For green field sites, disturbance limitations are as follows:
 1. 40 feet beyond the building perimeter
 2. 10 feet beyond surface walkways, patios, surface parking and utilities less than 12 inches in diameter.
 3. 15 feet beyond primary roadway curbs and main utility branch trenches.
 4. 25 feet beyond constructed areas with permeable surfaces (such as pervious paving areas, storm water detention facilities and playing fields) that require additional staging areas to limit compaction in the constructed area.

 For previously developed areas, a minimum of 50% of the site (excluding the building footprint) or 20% of the total site area (including building footprint), whichever is greater, must be restored or protected with native or adapted vegetation.
B. To the maximum extent feasible and practicable, the construction bid documents are to specify that no less than 10% of materials (in terms of materials and products cost) for retaining wall construction be harvested, extracted, or manufactured in the State of Georgia. It is Georgia Tech's strong preference to begin with the closest local (Atlanta Metropolitan Area) region first, and then move outward within the state, and finally up to the 500 mile region beyond.

C. Brick, stone and concrete waste materials resulting from the demolition of existing retaining walls is to be salvaged for recycling or re-use as part of the required construction waste management plan for the project. Salvaged or recycled fencing will contribute to the required percentage of recycled construction and demolition materials for the project, which is defined on a project-by-project basis.

END OF SECTION
331000 Water Utilities

1.01 GENERAL:
 A. This section addresses requirements for water utilities on the Georgia Institute of Technology (GT) Campus including water mains for domestic service and fire protection, valves, fire hydrants and other appurtenances.

2.01 DESIGN GUIDELINES
 A. Water Distribution for Domestic Service and Fire Protection:

 1. All water distribution main materials including piping, valves, fire hydrants and vaults for water system appurtenances shall be as approved by the City of Atlanta Department of Watershed Management, Technical Services Division and all applicable codes including the Georgia Department of Natural Resources Environmental Protection Division Minimum Standards for Water Systems, current edition.

 2. Piping for domestic service and fire protection service lines to be maintained by Georgia Tech shall be as follows:

 3. Piping 3-inch diameter and larger is to be ductile iron pipe in accordance with AWWA C151, cement lined as per AWWA C104, coated inside and outside with an approved coal-tar coating. Pipe to be Pressure Class 350 minimum, with push-on or mechanical joints in accordance with AWWA Standard C111. Ductile iron pipe and fittings to be by American or U.S. Pipe only.

 a. Piping less than 3-inches in diameter is to be ASTM D2241 pressure rated PVC pipe, SDR 21 minimum, with solvent weld joints.

 4. Coordinate water service piping size requirements for domestic service and for fire protection with the plumbing plans.

 5. Provide backflow prevention devices as required by the City of Atlanta Department of Watershed Management, Technical Services Division and all applicable codes.

 6. Pressure and leakage tests shall be performed in accordance with the latest edition of AWWA Standard C600 and the Georgia Department of Natural Resources Environmental Protection Division Minimum Standards for Water Systems, current edition.

 7. New water mains shall be disinfected before they are placed in service. Disinfection of new mains and services including the disposal of the heavily chlorinated water following the disinfection is to be accomplished in accordance with the latest edition of AWWA Standard C651 and Georgia Department of Natural Resources Environmental Protection Division Minimum Standards for Water Systems, current edition.

 8. Water system design is to provide flush, wall-mounted hose bibs minimum on each side of building. Where length of building wall exceeds 200 feet, provide additional hose bibs at spacing not exceeding 200 feet on center.
B. Landscape Irrigation Systems:

1. Provide a 2-inch diameter water line stub-out at 2 feet below finished grade, and at 2 feet outside of building facade near service area in a landscape area for irrigation use.

2. Coordinate with the electrical design to provide a 120 volt electrical power supply stubout to outside wall in service area at 5-feet above ground level for irrigation controller.

3. Coordinate irrigation system design with landscape design. Irrigation controller to be Calsense ET20008. Manufacturer’s representative contact number is 1-800-572-8608.

4. Irrigation system water supply shall be protected by an above ground RPZ backflow preventer as approved by the City of Atlanta Department of Watershed Management, Technical Services Division and shall comply with all codes in the state of Georgia.

3.01 CONSTRUCTION DOCUMENT REQUIREMENTS

A. Utility plans are to be at the same scale as the building site plans. For standalone utility plans not associated with a new building or building renovation project, the utility plans are to be at the same scale as the survey.

B. Utility plans are to show existing and proposed water mains, services and appurtenances.

C. Show all existing and proposed easements.

D. Provide construction details on the construction plans, including current applicable City of Atlanta standard details.

E. Include the following note on utility plans:

F. Contractor is responsible to contact Georgia Tech Facilities Infrastructure at 404-385-6000 for information regarding utilities locate request for Georgia Tech owned utilities. Submit completed locate request for Georgia Tech owned utilities at least 72 hours prior to any excavation.

G. Technical specifications applicable to water utility construction are to require the Contractor to submit drawings and supporting calculations for trench support systems for utility trenches 5 feet or more in depth. Submittals for trench support systems shall be prepared, sealed, and signed by a professional civil or structural engineer currently registered in the State of Georgia.

H. For projects that will require blasting for removal of trench rock for water utility construction, the technical specifications are to require the Contractor to prepare and submit a comprehensive Blasting Plan and obtain approval before the start of blasting operations. The Blasting Plan shall identify the proposed methods and procedures for conforming to the State of Georgia Blasting Standards Act, O.C.G.A. 25-8-2, 2009, the State of Georgia Utility Facility Protection Act, O.C.G.A. 25-9-1, and including seismograph monitoring.
4.01 SUSTAINABLE DESIGN AND CONSTRUCTION

A. The Governor’s Water Conservation Challenge commits all state agencies and authorities in Georgia to implement practices that help reduce water usage by a minimum of 2% annually through the year 2020. Reductions will be calculated on a per square foot basis, using fiscal year 2007 as the baseline.

B. GT is moving toward capturing 90% of all stormwater generated on campus and some black water from selected buildings. The water collected and processed through Georgia Tech infrastructure may be available to provide water for water closet and urinal flushing and landscape irrigation. The design team is responsible to determine if non-potable and or grey water if available from GT is available and utilize GT infrastructure, if available, to offset City water, stormwater, and sewer services.

C. Georgia Tech has the stated objective for the design and construction of all building projects to meet or exceed The Governor’s Water Conservation Challenge. Design of irrigation systems are to minimize the use of potable water or natural water resources in accordance with Yellow Book 010001 to maximize water efficiency. Irrigation system design should consider use of captured rainwater and use of recycled wastewater as a means of reducing or eliminating potable water use for irrigation.

END OF SECTION
333000 Sanitary Sewerage Utilities

1.01 GENERAL:
A. This section addresses requirements for sanitary sewerage utilities on the Georgia Institute of Technology (GT) Campus including sanitary sewer mains and services.

2.01 DESIGN GUIDELINES
A. All sanitary sewer main materials including piping and manholes shall be as approved by the City of Atlanta Department of Watershed Management, Technical Services Division and all applicable codes.
B. Piping for sanitary sewer mains and service lines to be maintained by GT shall be ductile iron. Ductile iron pipe is to be in accordance with AWWA C151, cement lined as per AWWA C104, and coated inside and outside with an approved coal-tar coating. Pipe to be Pressure Class 350 minimum, with push-on joints in accordance with AWWA Standard C111. Ductile iron pipe and fittings to be by American or U.S. Pipe only.
C. Coordinate sanitary sewer service line size and location requirements with the plumbing plans.
D. All gravity sewer mains and services pipe lines will be subject to tests for leakage made in the presence of the Owner. Allowable leakage into or out of the system through the sewers, laterals and manholes, is not to exceed 100 gallons per 24 hours per mile of pipe per inch of diameter except that where exfiltration tests are required or necessary, the joints shall perform equally well, but are permitted for each additional 2 foot head over basic 2 foot minimum internal head. Low pressure air testing may be provided as an alternate to hydrostatic testing for infiltration and exfiltration if approved by the City of Atlanta Department of Watershed Management, Technical Services Division and/or Georgia Tech.

3.01 CONSTRUCTION DOCUMENT REQUIREMENTS
A. Construction plans for sanitary sewer mains and services are to provide the following at minimum:
 1. Plan and profile for proposed sewers.
 2. Construction details for manholes and any special sewer structures, including current applicable City of Atlanta standard details.
 3. All existing and proposed easements.
B. Utility plans are to be at the same scale as the building site plans. For standalone utility plans not associated with a new building or building renovation project, the utility plans are to be at the same scale as the survey. Horizontal scale for sanitary sewer profiles shall match the plan scale. Vertical scale for sanitary sewer profiles shall be 1 inch equals 5 feet where the horizontal plan scale is 1 inch equals 20 feet or 1 inch equals 10 feet. Vertical scale for sanitary sewer profiles shall be 1 inch equals 10 feet where the horizontal plan scale is 1 inch equals 30 feet or greater.
C. Include the following note on utility plans:
 1. Contractor is responsible to contact Georgia Tech Facilities Infrastructure at 404-385-6000 for information regarding utilities locate request for Georgia Tech owned utilities. Submit completed locate request for Georgia Tech owned utilities at least 72 hours prior to any excavation.
2. Technical specifications applicable to sanitary sewerage utilities construction are to require the Contractor to submit drawings and supporting calculations for trench support systems for utility trenches 5 feet or more in depth. Submittals for trench support systems shall be prepared, sealed, and signed by a professional civil or structural engineer currently registered in the State of Georgia.

3. For projects that will require blasting for removal of trench rock for sanitary sewerage utility construction, the technical specifications are to require the Contractor to prepare and submit a comprehensive Blasting Plan and obtain approval before the start of blasting operations. The Blasting Plan shall identify the proposed methods and procedures for conforming to the State of Georgia Blasting Standards Act, O.C.G.A. 25-8-2, 2009, the State of Georgia Utility Facility Protection Act, O.C.G.A. 25-9-1, and including seismograph monitoring.

4.01 SUSTAINABLE DESIGN AND CONSTRUCTION

A. The Governor’s Water Conservation Challenge commits all state agencies and authorities in Georgia to implement practices that help reduce water usage by a minimum of 2% annually through the year 2020. Reductions will be calculated on a per square foot basis, using fiscal year 2007 as the baseline.

B. GT is moving toward capturing 90% of all stormwater generated on campus and some black water from selected buildings. The water collected and processed through Georgia Tech infrastructure may be available to provide water for water closet and urinal flushing and landscape irrigation. The design team is responsible to determine if non-potable and or grey water if available from GT is available and utilize GT infrastructure, if available, to offset City water, stormwater, and sewer services.

END OF SECTION
334000 Storm Drainage Utilities

1.01 GENERAL:
A. This section addresses requirements for storm drainage utilities on the Georgia Tech Campus including storm water collection, conveyance, treatment and detention systems.

2.01 DESIGN GUIDELINES
A. Design of stormwater systems is to meet the minimum requirements of the State of Georgia Stormwater Management Manual (Blue Book), the City of Atlanta Stormwater Management Program, and is to be consistent with Georgia Tech’s Stormwater Management Objectives:
1. Develop the Eco-Commons and associated Corridors into a sustainable stormwater management system.
2. Reconstruct and condition soils to increase infiltration and storage.
3. Recharge groundwater supplies and reinvigorate pre-existing natural drainage systems of the campus.
4. Increase campus tree canopy coverage.
5. Increase the campus coverage of woodlands.
6. Manage storm-water as close to its point of contact as possible.
7. Replace existing management systems which funnel storm-water into pipes, with systems that bring water into contact with the soil.
8. Treat stormwater as a valuable resource, including harvesting it for non-potable uses.
9. Utilize campus corridors as multi-purpose avenues, with ecological function that include detention, infiltration, recharge and conveyance of water to the Eco-Commons.

B. Stormwater management design is to be documented in a Stormwater Management System Design Report as is required for compliance with the City of Atlanta Stormwater Management Program.

C. Design of stormwater systems is to be coordinated with the design of temporary and permanent erosion control measures.

D. Materials for storm drainage systems including pipe, manholes, catch basins, curb inlets, culverts, headwalls and iron castings are to be approved by the City of Atlanta Department of Watershed Management, Technical Services Division and/or Georgia Tech.

E. All solid wall storm drain pipe is to be furnished with gasketed leak proof joints.

3.01 CONSTRUCTION DOCUMENT REQUIREMENTS
A. Grading and drainage plans are to show existing contours as dashed lines and proposed contours as solid lines at 1-foot intervals.

B. See Section 310000 Earthwork for grading design guidelines.
C. Complete plans and details are to be provided for all stormwater system components including the following:
 1. Plan and profiles for proposed storm drain lines. Profiles are to show invert elevations and slopes for all culverts, pipes and structures.
 2. Construction details for manholes and any special sewer structures, including current applicable City of Atlanta or Georgia Department of Transportation standard details.
 3. All existing and proposed easements required for construction and maintenance of storm drainage facilities.
 4. Detailed dimensions, elevations, and volumes for all underground stormwater detention, retention and treatment structures.
 5. Size and location of rain gutter and downspout discharges, including connections to the drainage system.

D. As a general rule, do not connect downspouts directly into the drainage system, except as may be necessary for pedestrian safety.

E. Storm drainage and grading plans are to be at the same scale as the building site plans. Horizontal scale for storm drain profiles shall match the plan scale. Vertical scale for storm drain profiles shall be 1 inch equals 5 feet where the horizontal plan scale is 1 inch equals 20 feet or 1 inch equals 10 feet. Vertical scale for storm drain profiles shall be 1 inch equals 10 feet where the horizontal plan scale is 1 inch equals 30 feet or greater.

F. Include the following note on storm drainage and grading plans:

G. Contractor is responsible to contact Georgia Tech Facilities Infrastructure at 404-385-6000 for information regarding utilities locate request for Georgia Tech owned utilities. Submit completed locate request for Georgia Tech owned utilities at least 72 hours prior to any excavation.

H. Technical specifications applicable to storm drainage utilities construction are to require the Contractor to submit drawings and supporting calculations for trench support systems for utility trenches 5 feet or more in depth. Submittals for trench support systems shall be prepared, sealed, and signed by a professional civil or structural engineer currently registered in the State of Georgia.

I. For projects that will require blasting for removal of trench rock for storm drainage utility construction, the technical specifications are to require the Contractor to prepare and submit a comprehensive Blasting Plan and obtain approval before the start of blasting operations. The Blasting Plan shall identify the proposed methods and procedures for conforming to the State of Georgia Blasting Standards Act, O.C.G.A. 25-8-2, 2009, the State of Georgia Utility Facility Protection Act, O.C.G.A. 25-9-1, and including seismograph monitoring.

4.01 SUSTAINABLE SITE

A. Georgia Tech has the stated objective for the design and construction of all building projects to be examples in sustainable design and construction and attain or be capable of attaining Peach Green Building Rating System point level of 31 points in addition to Yellow Book Requirements. To the maximum extent feasible and practicable, the storm drainage and grading design shall consider the use of retaining walls to minimize the extent of cut and fill slopes in accordance with Yellow Book Sections 323200 Retaining Walls and 310000 Earthwork, to minimize disturbed areas and Protect or Restore Habitat, defined in GITGTGT Yellow Book.
B. The placement of stormwater management facilities is to be coordinated with the site planning, earthwork and erosion control design in compliance with Yellow Book Section 310000 Earthwork.

C. To the maximum extent feasible and practicable, the construction bid documents are to specify that materials for storm drainage utilities be Georgia-based Materials & Products and documented in accordance with Yellow Book Section 010001 General Requirements and Peach Green Building Rating System.

D. Metal pipe, stone, asphalt and concrete waste materials resulting from the demolition of existing storm drainage utilities are to be salvaged for recycling or re-use to maximize the potential in accordance with Yellow Book 01 74 19 Construction Waste Management for recycling a minimum of 85% Construction Waste Management.

E. Portland cement concrete specified for ditch paving and gutters is to be reinforced with synthetic fibers in lieu of welded wire fabric or steel reinforcing bars wherever possible to maximize potential for recycling of concrete waste materials in the future.

F. The stormwater management design is to implement the use of porous concrete pavement and other porous paving materials including porous paver systems for parking lots, driveways, sidewalks and trails to minimize stormwater runoff and achieve Yellow Book Section 31 25 00 Erosion and Sedimentation Controls. Materials for pervious or porous pavement systems utilizing precast concrete pavers, manufactured stone pavers, texturized asphalt or recycled shredded rubber matrix products are to be consistent with the Georgia Tech Landscape Master Plan.

The design of storm drainage systems and development of the overall stormwater management plan is to minimize the use of impervious materials, promote infiltration, and provide stormwater quality controls consistent with the State of Georgia Stormwater Management Manual (Blue Book) to achieve Yellow Book Section 31 25 00.

END OF SECTION
339000 Cisterns

1.01 GENERAL

A. In support of Georgia Tech’s commitment to sustainability and water conservation, Georgia Tech promotes the use of cisterns for rainwater and HVAC condensate harvesting for use in irrigating the campus and to provide water for flushing water closets and urinals. Development of a new cistern system shall be coordinated through CPSM and shall be in conformance with the Campus Storm Water Management Master plan.

B. Where harvested water is used for water closet and urinal flushing, only roof rainwater and HVAC condensate may be used. Cisterns capturing site runoff may only be used for irrigation.

C. Metering of cistern usage shall be in accordance with campus standards and interface with the campus ION system. Measurements shall be for total water consumption and be read in 100gal per contact closure increments. Separate metering shall be provided for irrigation and flushing systems.

D. Installation of harvested water systems shall be in compliance with the current International Plumbing code and all GA amendments. As this continues to be a developing application, it is important that the design engineer is current with all applicable codes.

E. All systems supplied by the cistern shall be equipped with an automated domestic water back-up system. If the back-up system is provided at the cistern, a low level indicating device shall be provided such that only one day’s worth of water is filled at the cistern in order to maximize rainwater harvesting and minimize overflow to drain. As an alternate, a separate day tank may be provided for such back-up. An approved air gap shall be provided at the point of connection as required by code to provide backsiphonage and backpressure protection to the city system.

F. Cistern pumps shall be controlled OFF based on a low level indicating device.

G. The campus controls vendor (Johnson Controls) shall provide feedback of the cistern pump status and automated valve positions through the campus controls front end (Metasys).

H. For cisterns over 10,000gal, provide an ultrasonic or laser level device that will provide cistern level information to be reported to the campus controls front end. This information may also be integrated into a building energy dashboard.

I. Cisterns shall be installed with a treatment and filtration system that at a minimum meets the International Plumbing code with GA amendments. Cisterns serving irrigation systems with spray and rotor heads shall be filtered to 300microns or below. Drip irrigation and water closet/urinal flushing systems shall be filtered to a minimum of 100 microns.

J. Large concrete cisterns shall utilize a sump and submersible pump configuration.

END OF SECTION